博碩士論文 103827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.21.46.82
姓名 王詩堯(Shih-Yao Wang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱
(Hand-Held Assessment Device for Dental Implant Osseointegration Stability through Vibro-Acoustic Technique)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於缺牙患者,植牙手術已逐漸成為受歡迎且被採用的療法。骨整合的好壞直接反映了植體穩固度,因此建立提供牙醫師客觀評估骨整合對於手術的成功與否非常重要。
本論文根據共振頻率分析法,延續非接觸式檢測技術,期望提供一個非接觸手持式裝置量測植體穩固度。以微型蜂鳴器為激振源,電容式位移計為感測端以實現聲能激振-震動響應之技術,並使用TestPeg對裝置雛形做初步驗證,量測結果顯示與市售儀品OsstellR有高度相關。為了進一步確認裝置的有效性,不同的人造骨塊並填充不同比例的環氧樹脂將用來模擬骨整合於不同階段生長骨細胞之特性,此外,亦將植體植入白兔脛骨觀察活體的骨整合情形。
體外骨塊實驗結果顯示:近遠心側,除了其中一種設計以外,如預期地隨著緻密骨變厚與疏鬆骨之楊式係數上升而上升;而頰舌側因非骨塊夾治方向,造成量測到的頻率不僅僅為植體結構物的震動,因此相較之下,當只有植體之結構物震動,此情況量測結果較無法直接反映骨質特性。動物實驗結果顯示:次級穩固度將隨著時間增加後期的穩固度,初始穩固度主導植體是否能夠骨整合。
根據本研究結果驗證聲能激振-震動響應檢測技術具可行性,且技術可量測到體外骨質特性之差異與於活體實驗骨整合之變化。儘管在測量過程中,手持式裝置的方便性仍然需要改進。本技術確實可用於骨整合期間監測病患的牙科植體穩固度。
摘要(英) Dental implantation has become a popular treatment procedure for edentulous patients. Osseointegration is a direct connection between an ordered, living bone, and it directly reflects dental implant stability. Therefore, it is important to establish an assessment of implant stability.
Based on resonance frequency analysis (RFA), the objective of this thesis is to device with non-contact detection technique to quantify the stability of implants. Vibro-acoustic detection technique is developed on acoustic excitation and displacement sensor. The initial validation for prototype device’s performance was conducted by TestPeg and previous designated cases. A commercial product, OsstellR, has high correlation of determination between our detection device. To verify the feasibility for the technique, especially detecting the variation of implant osseointegration stability in healing process. Interface-tissue made from different mixing ratios of epoxies and casted in artificial bone blocks was used to mimic different phases of osseointegration in in-vitro experimentation. Besides, animal trails via rabbits were conducted to observe osseointegration in live bodies.
In-vitro experiment results show that the frequencies in MD measurements increase as mixing ratio getting higher except for one case. The reason which makes the trend changeful in BL measurements comes from the fixing condition. In in-vivo experiment, the results show that secondary stability dominates stability after stability dip and increases as time passing. Primary stability influences success of following adaptation.
Although the convenience for handling the prototype probe in measurement is still needed to improve. The vibro-acoustic detection technique is still practical because it reflects real clinical conditions in in-vivo experiments. In conclusion, the technique is indeed feasible for monitoring osseointegration of the dental implant stability during healing process.
關鍵字(中) ★ 牙科植體
★ 骨整合
★ 非接觸式檢測
★ 共振頻率分析
★ 動物試驗
關鍵字(英) ★ Dental implant
★ Osseointegration
★ Noncontact detection
★ Resonance frequency analysis
★ Animal trail
論文目次 Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Literature Review 3
1.2.1 Invasive Methods 3
1.2.2 Non-invasive Methods 3
1.3 Research Scope and Framework 7
Chapter 2 Engineering Basis for the Detection of Dental Osseointegration 8
2.1 Structural Resonance Measurement 8
2.1.1 Resonance Frequency of Cantilever Structure 8
2.1.2 Vibration Measurement 9
2.1.3 Mode shape of Resonance frequency 10
2.2 Excitation 11
2.2.1 Sound wave 11
2.2.2 Chirp signal 12
2.3 Detection 14
2.3.1 Capacitance 14
2.3.2 Distance sensing 15
2.3.3 Basis of capacitive displacement sensor 17
Chapter 3 Design of Detection Devices 18
3.1.1 Signal Flow 19
3.1.2 LabVIEW user interface 20
3.2 Component overview 23
3.2.1 Buzzer 23
3.2.2 Capacitive Displacement Sensor 26
3.3 Technique validation and Device design 27
Chapter 4 In-vitro and In-vivo Experimental Verification 34
4.1 In-vitro Experimentation 34
4.1.1 Experimental subject design 34
4.1.2 Affected variable in experiments 37
4.2 In-vivo Experimentation 40
4.2.1 Animal trail 40
Chapter 5 Results and Discussion 43
5.1 In-vitro experiment discussion 43
5.2 In-vivo experiment discussion 50
Chapter 6 Conclusions and Future work 59
Reference 61
Appendix 65
參考文獻 [1] Branemark, P.-I., Zarb, G.A., Albrektsson, T. and Per-ingvar, E.B.E. Tissue-integrated prostheses: Osseointegration in clinical dentistry, Edited by P-. I. Branemark. 2nd edn. Quintessence Publishing Co Inc., Chicago, 1985.
[2] Newman, M.G., Takei, H.H., Carranza, F.A., Klokkevold, P.R., DDS, M.N.G., MS, H.T.D., Perry R. Klokkevold DDS MS and Fermin A. Carranza Dr Odont Carranza’s clinical Periodontology expert consult 12th edn, Elsevier Science Health Science div, Philadelphia, PA, United States, 2015.
[3] Mistry, G., Shetty, O., Shetty, S. and Singh, R. ‘‘Measuring implant stability: A review of different methods,’’ Journal of Dental Implants, 4(2), pp. 165-169 (2014).
[4] 皇亮生醫科技股份有限公司TISS 產品型錄。
[5] 明基口腔醫材BenQ AB DentCare Corp 產品型錄。
[6] Koretake, K., Oue, H., Okada, S., Takeda, Y., Doi, K., Akagawa, Y. and Tsuga, K. ‘‘The effect of Superstructures connected to Implants with different surface properties on the surrounding bone,’’ Journal of Functional Biomaterials, 6(3), pp. 623–633 (2015).
[7] Cesaretti, G., Botticelli, D., Renzi, A., Rossi, M., Rossi, R. and Lang, N.P. ‘‘Radiographic evaluation of immediately loaded implants supporting 2-3 units fixed bridges in the posterior maxilla: A 3-year follow-up prospective randomized controlled multicenter clinical study,’’ Clinical Oral Implants Research, 27(4), pp. 399–405 (2015).
[8] Schulte, W., d′Hoedt, B., Lukas, D., Muhlbradt, L., Scholz, F., Bretschi, J., Frey, D., Gudat, H., Konig, M. and Markl, M. "Periotest--a new measurement process for periodontal function," Zahnarztliche Mitteilungen, 73, pp. 1229 (1983).
[9] Lukas, D. and Schulte, W. ‘‘Periotest-a dynamic procedure for the diagnosis of the human periodontium,’’ Clinical Physics and Physiological Measurement, 11(1), pp. 65–75 (1990).
[10] Chakrapani, S., Goutham, M., Krishnamohan, T., Anuparthy, S., Tadiboina, N. and Rambha, S. ‘‘Periotest values: Its reproducibility, accuracy, and variability with hormonal influence,’’ Contemporary Clinical Dentistry, 6(1), pp. 12-15 (2015).
[11] Harirforoush, R. ‘‘Dental implant stability analysis by using resonance frequency method,’’ Dissertation in Applied Science: School of Engineering Science, Simon fraser university (2012).
[12] Meredith, N., Alleyne, D. and Cawley, P. ‘‘Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis,’’ Clinical Oral Implants Research, 7(3), pp. 261–267 (1996).
[13] Cawley, P. and Pettersson, A. “Method and arrangement relating to testing objects,” United States Patent, Patent No.: US 8,391,958 B2 (2013).
[14] Oh, J.-S. and Kim, S.-G. ‘‘Clinical study of the relationship between implant stability measurements using Periotest and Osstell mentor and bone quality assessment,’’ Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 113(3), pp. e35–e40 (2012).
[15] Jaramillo, R., Santos, R., Lazaro, P., Romero, M., Rios-Santos, J.V., Bullon, P., Fernandez-Palacin, A. and Herrero-Climent, M. ‘‘Comparative Analysis of 2 Resonance Frequency Measurement Devices: Osstell Mentor and Osstell ISQ,’’ Implant Dentistry, 23(3), pp. 351-356 (2014).
[16] Trisi, P., Carlesi, T., Colagiovanni, M. and Perfetti, G. ‘‘Implant stability quotient (ISQ) vs direct in vitro measurement of primary stability(micromotion): effect of bone density and insertion torque,’’ Journal of Osteology and Biomaterials, 1, pp. 141–151 (2010).
[17] Shin Chia, T., Chen, C.-S. and Pan, M.-C. ‘‘Assessment of dental implantation Osseointegration through Electromagnetic Actuation and detection,’’ Journal of Medical Devices, 8(3), pp. 030940 (2014).
[18] 牟汝振,「電磁式植牙骨整合穩固度檢測技術研究與裝置開發」,國立中央大學機械工程研究所,碩士論文,民國104年。
[19] Huang, H.-M., Pan, L.-C., Lee, S.-Y., Chiu, C.-L., Fan, K.-H. and Ho, K.-N. ‘‘Assessing the implant/bone interface by using natural frequency analysis,’’ Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 90(3), pp. 285–291 (2000).
[20] Pan, C.-Y., Chou, S.-T., Tseng, Y.-C., Yang, Y.-H., Wu, C.-Y., Lan, T.-H., Liu, P.-H. and Chang, H.-P. ‘‘Influence of different implant materials on the primary stability of orthodontic mini-implants,’’ The Kaohsiung Journal of Medical Sciences, 28(12), pp. 673–678 (2012).
[21] Chnag, W.-J., Lee, S.-Y., Wu, C.-C., Lin, C.-T., Abiko, Y., Yamamichi, N. and Huang, H.-M. ‘‘A newly designed resonance frequency analysis device for dental implant stability detection,’’ Dental Materials Journal, 26(5), pp. 665–671 (2007).
[22] Zhuang, H.-B., Tu, W.-S., Pan, M.-C., Wu, J.-W., Chen, C.-S., Lee, S.-Y., and Yang, Y.-C. ‘‘Non-contact Vibro-acoustic Detection Technique for Dental Osseointegration Examination,’’ Journal of Medical and Biological Engineering, 33(1), pp. 35-44 (2013).
[23] Pan, M.-C., Zhuang, H.-B., Chen, C.-S., Wu, J.-W. and Lee, S.-Y. ‘‘A noncontact resonance frequency detection technique for the assessment of the interfacial bone defect around a dental implant,’’ Medical Engineering & Physics, 35(12), pp. 1825–1830 (2013).
[24] 南部生技醫療器材產業聚落發展計畫期末報告:植牙骨整合穩固度檢測儀開發研究(編號:BZ-11-11-27-105),(E.2)植體-齒槽骨介面狀態分析報告,民國106年。
[25] Banks, H.T. and Tran, H.T. Mathematical and experimental modeling of physical and biological processe, Chapman & Hall/CRC, London, 2008.
[26] Moslehy, F.A. and Wu, J. “On modal testing using speaker for excitation,” Proceeding of the 13th International Modal Analysis Conference, pp. 24–29 (1995).
[27] Moslehy, F.A. and Wu, J. “Modal testing using two speakers and application to the space shuttle tiles bond assessment,” Proceeding of the 15th International Modal Analysis Conference, pp. 7–12 (1997).
[28] David, F.A. “Mathematic of Linear Sweeps,” Canadian journal of exploration geophysics, 28(1), pp. 62-68 (1992).
[29] P. Zhang. Advanced Industrial Control Technology, Elsevier, Oxford, 2010.
[30] J.G. Webster, Ed. The Measurement, Instrumentation and Sensors, CRC Press LLC, 2000.
[31] Bonse, M.H.W., Zhu, F. and Beek, H.F. van ‘‘A long-range capacitive displacement sensor having micrometre resolution,’’ Measurement Science and Technology, 4(8), pp. 801–807 (1993).
[32] Zhuang. H.-B., Pan, M.-C., Chen J.-Z., Wu J.-W. and Chen, C.-S. ‘‘A noncontact detection technique for interfacial bone defects and osseointegration assessment surrounding dental implants,’’ Measurement, 55, pp. 335–342 (2014).
[33] Hsu, J.-T., Fuh, L.-J., Tu, M.-G., Li, Y.-F., Chen, K.-T. and Huang, H.-L. ‘‘The effects of cortical bone thickness and Trabecular bone strength on Noninvasive measures of the implant primary stability using synthetic bone models,’’ Clinical Implant Dentistry and Related Research, 15(2), pp. 251–261 (2011).
[34] Misch, C.E., Qu, Z. & Bidez, M.W. ‘‘Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement,’’ Journal of Oral and Maxillofacial Surgery, 57, pp. 700–706 (1999).
[35] Jaffin, R.A. and Berman, C.L. ‘‘The excessive loss of Branemark fixtures in type IV bone: A 5-Year analysis,’’ Journal of Periodontology, 62(1), pp. 2–4 (1991).
[36] Lakatos, E., Magyar, L. and Bojtar, I. ‘Material properties of the Mandibular Trabecular bone,’’ Journal of Medical Engineering 2014, pp. 1–7 (2014).
[37] Lim, J., Lee, S., Kim, Y., Lim, W. and Chun, Y. ‘‘Comparison of cortical bone thickness and root proximity at maxillary and mandibular interradicular sites for orthodontic mini-implant placement,’’ Orthodontics & Craniofacial Research, 12(4), pp. 299–304 (2009).
[38] Vilani, G.N., Ruellas, A.C., Mattos, C.T., Fernandes, D.J. and Elias, C.N. ‘‘Influence of cortical thickness on the stability of mini-implants with microthreads,’’ Brazilian Oral Research, 29(1), pp.1-7 (2015).
[39] Ono, A., Motoyoshi, M. and Shimizu, N. ‘‘Cortical bone thickness in the buccal posterior region for orthodontic mini-implants,’’ International Journal of Oral and Maxillofacial Surgery, 37(4), pp. 334–340 (2008).
[40] Laursen, M.G., Melsen, B. and Cattaneo, P.M. ‘‘An evaluation of insertion sites for mini-implants. a micro-CT study of human autopsy material,’’ Angle Orthod. 83(2), pp.222-229 (2013).
[41] Jemt, T. ‘‘Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup,’’ International Journal of Oral & Maxillofacial Implants, 6(3) pp.89-102 (1991).
[42] Dabney, C.L.S. and Dechow, P.C. ‘‘Variations in cortical material properties throughout the human dentate mandible,’’ American Journal of Physical Anthropology, 120(3), 252–277 (2003).
[43] Van Staden, R.C., Guan, H., Loo, Y.C., Johnson, N.W. and Meredith, N. ‘‘Stress distribution in mandible regulated by bone and dental implant parameters : Part I - Methodology,’’ Proceeding of the 5th Australasian Congress on Applied Mechanics, 1, pp. 818–829 (2007).
[44] Thomas, B., Bhat, K. and Mapara, M. ‘‘Rabbit as an animal model for experimental research,’’ Dental Research Journal, 9(1), p. 111-118 (2012).
[45] Suzuki, S., Kobayashi, H. and Ogawa, T. ‘‘Implant stability change and Osseointegration speed of immediately loaded Photofunctionalized Implants,’’ Implant Dentistry, 22(5), pp. 481–490 (2013).
[46] Javed, F., Ahmed, H.B., Crespi, R. and Romanos, G.E. ‘‘Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation,’’ Interventional Medicine and Applied Science, 5(4), pp. 162–167 (2013).
[47] Anand, N., Chandrasekaran, S., Kovendhan, Y. and Alam, M. ‘‘Is primary stability the gold standard factor in implant success,’’ Dental Hypotheses, 5(2), pp. 70-74 (2014).
[48] Lioubavina-Hack, N., Lang, N.P. and Karring T. ‘‘Significance of primary stability for osseointegration of dental implants,’’ Clinical Oral Implants Research, 17(3), pp. 244–250 (2006).
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2017-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明