博碩士論文 89222027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.149.29.98
姓名 何飛宏(Fei-Hung Ho)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Teleparallel 理論中之準局域質心距
(QUASILOCAL CENTER-OF-MASS FOR GR{II})
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 度規仿射重力理論中的準局域能量-動量
★ 廣義相對論理論中之準局域質心距★ 幾何代數與微分形式間之轉換及其在重力之應用
★ 幾何代數下的旋量與重力場正能量★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用
★ 廣義相對論的準局域量的小球極限★ 重力場中準局域角動量的旋子表述
★ 有Torsion效應的宇宙★ 準區域的膺張量和陳聶式子
★ 準局部能量與參考系之選擇★ 在Kerr幾何的特殊正交座標系和狄拉克旋子
★ 球對稱時空的準局域能量★ Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Nester-Chen 準局域表示式在 Teleparallel 理論及廣義相對論中,可以使能量、動量、角動量及質心距的準局域化 (quasilocalization) 成為協變的 (covariant) ,而此篇論文要討論的是:Teleparallel理論中的準局域質心距,在Nester-Chen 準局域表示式裡佔有重要地位。
摘要(英) Asymptotically flat gravitating system have 10 conserved quantities associated with
Poincar´e symmetry, which lack proper local densities. It has been hoped that the
tetrad formulation and the related teleparallel equivalent of Einstein’s GR (TEGR,
aka GR{II}) could solve this longstanding gravitational energy-momentum localization
problem [23, 32, 33]. Quasilocal expressions are now favored. Earlier quasilocal GR{II}
investigations focused on energy-momentum [32, 33]. Recently our group considered
angular momentum and found that the popular expression (unlike our “covariantsymplectic”
one [5]) was not asymptotically locally Lorentz frame gauge invariant;
it gives the correct result but only in a certain frame [30]. The remaining Poincar´e
quantity, the center-of-mass moment, has been neglected. Obtaining the correct value
for this quantity is a quite severe requirement, hence a new discriminating test for
proposed expressions. We found (independent of the frame gauge choice) that the
GR{II} “covariant-symplectic” Hamiltonian-boundary-term quasilocal expression succeeds
while the usual expression does not give the desired center-of-mass moment.
None of the tetrad expressions gives the desired center-of-mass moment. We conclude
that the teleparallel formulation is definitely better than the tetrad formulation, and
the covariant-symplectic expressions are definitely better than the alternatives. We
also found however that GR{II} has no advantage over GR for energy localization.
關鍵字(中) ★ asdf 關鍵字(英) ★ sadf
論文目次 Table of Contents iv
Abstract vi
Acknowledgements vii
1 Introduction 1
1.1 Conserved Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Symmetry in Physics . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Center-of-Mass Moment . . . . . . . . . . . . . . . . . . . . . 1
1.2 Conserved Quantities for Gravitation . . . . . . . . . . . . . . . . . . 3
1.2.1 Asymptotically Flat . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Pseudotensor for Energy-Momentum . . . . . . . . . . . . . . 3
1.2.3 Quasilocal Quantities . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Quasilocal Quantities 9
2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Covariant Hamiltonian Approach . . . . . . . . . . . . . . . . . . 12
2.3.1 Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Covariant Sympletic Quasilocal Expressions . . . . . . . . . . 14
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Teleparallel Formulation 16
3.1 Mathematical Conventions . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Møller’s Tetrad Representation . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Lagrange Multiplier Method . . . . . . . . . . . . . . . . . . . 18
3.2.2 Boundary Term . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 General Geometric Theory . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Formulation for GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
iv
3.4.1 Changing the Variables . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 GR{II} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Quasilocal Quantities for GR{II} . . . . . . . . . . . . . . . . . . 26
4 DN Terms Essential for the Center-of-Mass Moment 29
4.1 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1 Displacement N¹ . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Asymptotically Flat . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The DN Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Various B(N) Forms . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Essential DN Terms . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Evaluation of The Center-of-Mass Moment . . . . . . . . . . . . . . . 32
4.3.1 Metric and Coframe . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Conclusion 38
Bibliography 40
參考文獻 [1] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics, vol 1. Reading, Mass.: Addison-Wesley, 1965.
[2] N. Straumann, “General Relativity and Relativistic Astrophysics”, 1984.
[3] C.M. Chen, J.M. Nester and R.S. Tung, Phys. Lett. A 203(1995)5-11.
[4] J. Nester, “The Hamiltonian of Dynamic Geomtry”, 1990, unpublished lecture
notes.
[5] C.M. Chen, J. Nester, “Quasilocal Quantities for General Relativity and Other
Gravity Theories”, Class. Quantum Grav. 16 1279-304, 1999; gr-qc/9809020.
[6] C.M. Chen, J. Nester, “A symplectic Hamiltonian Derivation of Quasilocal
Energy-Momentum for GR ”, Grav.Cosmol. 6 257-270, 2000; gr-qc/0001088.
[7] C.C. Chang, J. Nester and C.M. Chen, “Pesudotensor and Quasilocal Energy-
Momentum”, Phys. Rev. Lett.83 1897-901, 1999; gr-qc/9809040.
[8] J. Nester, “Generalized Pesudotensors and quasilocal quantities”, 2002, yet to be published paper.
[9] J. Nester, and R. S. Tung Gen. Rel. Grav. 27 115-9
[10] J. M. Nester and H. J. Yo “ Symmetric teleparallel general relativity”, Chin. J. Phys. 37 113-117 (1999).
[11] J. M. Nester “ Positive energy via the teleparallel Hamiltonian ” Int. J. Mod. Phys. A4 (1989) 1755-1772.
[12] H. Goldstein, “Classical Mechanics”, 2nd. ed., Addison Wesley, 1980.
[13] J.Y. Lin “Applications of Geometric Algebra to Gravity Theory”, Msc thesis, National Central University, 1997.
[14] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
[15] F. Gronwald and F. W. Hehl, On the Gauge Aspects of Gravity, gr-qc/9602013
v1, 8Feb 1996.
[16] H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational Waves in General Relativity VII. Waves From Axi-symmetric Isolated Systems, Proc. R.
Soc. London A269 (1962) 21-52
[17] R. K. Sachs, Gravitational Waves in General Relativity VII. Waves From Axisymmetric Isolated Systems, Proc. R. Soc. London A270 (1962) 103-126
[18] R. K. Sachs, Asymptotic Symmetries in Gravitational Theory, Phys. Rev. 128
(1962) 2851-2864
[19] Nester J M 1991 Mod. Phys. Lett. A 6 2655-61
[20] Nester J M 1984 The gravitational Hamiltonian Asymptotic Behavior of Mass
and Space-Time Geometry (Lecture Notes in Physics vol 202) ed F Flaherty
(Berlin: Springer) pp 155-63
[21] Regge T and Teitelboim C 1974 Ann. Phys. 88 286-319
[22] Beig R and Murchadha N O 1987 Ann. Phys. 174 463-498
[23] C. Møller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, (1961) 1-50; Ann. Phy. 12 (1961) 118-133.
[24] R. Weitzenb¨ock, Invariantentheorie (Noordho®, Gronningen, 1923).
[25] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 217 (1928).
[26] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
[27] J. A. Schouten, Ricci Calculus, 2nd ed. (Springer-Verlag, London, 1954).
[28] R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity,
in Gravitation: an Introduction to Current Research ed. L Witten (New York:
Wiley) (1962) 227-265
[29] V. C. de Andrade, L. C. T. Guillen and J. G. Pereia “ Gravitational Energy-Momentum Density in Teleparallel Gravity” Phys. Rev. Lett. 84 (2000) 4533-4536
[30] K.H. Vu, “Quasilocal Energy-Momentum and Angular Momentum for Teleparallel
Gravity” (MSc, thesis, NCU, 2000)
[31] F.F. Meng, “Quasilocal Center of Mass Moment for GR” (MSc, thesis, NCU,
2002)
[32] J.W. Maluf, J. Math. Phys. 35 (1994) 335-343; (1995) 4242-47; (1996) 6293-6301
[33] V.C. de Andrade, L.C.T. Guillen and J.G. Pereira, Phys. Rev. Lett. 84 (2000) 4533-36
[34] Bergqvist G, Class. Quantum Grav. 9(1992) 1753-68
[35] Bergqvist G, Class. Quantum Grav. 9(1992) 1917-22
[36] Brown J D and York J W Jr (1993) Phys. Rev. D 47 1407-19;gr-qc/9209012
[37] Dougan A J and Mason L J 1991 Phys. Rev. Lett. 67 2119-22
[38] Hawking S W 1968 J. Math. Phys. 9 598-604
[39] Hayward S A 1994 Phys. Rev. D 49 831-39
[40] Jezierski J and Kijowski J 1990 Gen. Rel. Grav. 22 1283-307
[41] Katz J and Ori A 1990 Class. Quantum. Grav. 7 787-802
[42] Penrose R 1982 Proc. R. Soc. London A 381 53-63
[43] Lau S 1993 Class. Quantum. Grav. 10 2379-99; gr-qc/9307026
指導教授 聶斯特(James M. Nester) 審核日期 2003-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明