博碩士論文 103327601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.93.221
姓名 鄧慕旗(MUDENG, VICKY VENDY HENGKI)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 任意曲面模型之三維擴散光學影像重建計算研究
(Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文發展可應用於任意表面乳癌檢測之三維擴散光學斷層影像(Diffuse optical tomography, DOT)重建演算法。該DOT影像重建演算以擴散方程式為基礎,包含求解前向問題與逆向重建。在求解前向問題中,基於已知光源與光學係數(吸收與傳播散射係數)分佈之條件下,利用有限元素法(Finite element method, FEM)求解擴散方程式,計算入射光之強度與相位分佈。逆向重建中,則使用牛頓法最小化量測之數據與利用FEM所求得之理論值之間的差異,進而估測光學係數之分佈。由於逆向重建的病態特性(ill-posed nature),影像重建中使用Tikhonov正規化來穩定重建結果。
本論文中,使用不同位置、大小及光學係數對比度(相對於背景組織)腫瘤內置物之模擬案例下,來驗證前向問題(光強度與相位)與所發展之影像重建演算法。首先在仿乳幾何模型案例中,放置一直徑為20 mm之內置物於x = 15 mm,y = 0 mm,z = 40 mm,在此高度下(z = 40mm),此仿乳假體之直徑為80 mm。在內置物擁有相同的傳播散射係數與不同的吸收係數對比度條件下,利用FEM求解擴散方程式所得之理論數值結果顯示,越大的吸收係數對比度導致越大的光源強度上的差異;另一方面,在內置物擁有相同的吸收係數與不同的傳播散射係數對比度條件下,傳播散射係數對比度越大,則光強度與相位差異越大。影像重建結果顯示,在相同的傳播散射係數與不同的吸收係數對比度之內置物條件下,會高估腫瘤內置物的吸收係數,而低估傳播散射係數;利用相同的吸收係數與不同的傳播散射係數對比度內置物之條件下所得到之重建結果顯示,當傳播散射係數對比度為2倍,則會有高估內置物之吸收係數,與低估傳播散射係數之情形。

本研究中亦從核磁共振影像中擷取乳房幾何模型,並將直徑為20 mm腫瘤內置物嵌入於乳房模型中(x = 0 mm,y = -15 mm,z = 30 mm),進行影像重建。重建結果顯示,在相同的傳播散射係數與不同的吸收係數對比度下,所重建之內置物之傳播散射係數有低估之情形,而所重建之吸收係數隨著內置物吸收係數對比度的提高,而有高估越多之趨勢;而在相同的吸收係數與不同的傳播散射係數對比度下,當傳播散射係數對比度來到2.5倍時,則會高估其內置物吸收係數,且低估傳播散射係數。
摘要(英) The work within this thesis develops three-dimensional image reconstruction algorithm of diffuse optical tomography (DOT) system with arbitrary surface models for breast cancer detection. The image reconstruction algorithm of DOT is based on the diffusion equation, and involves both the forward problem and inverse reconstruction. The forward calculation solves the diffusion equation by using the finite element method (FEM) for calculating the distribution of transmitted light under the condition of presumed light source and optical coefficient (absorption and reduced scattering coefficients) of the model. The inverse calculation reconstructs the distribution of the optical coefficient by using Newton′s method to minimize the difference between theory and measured data. Due to ill-posed nature of the inverse problem, Tikhonov regularization is utilized to stabilize the reconstruction result.

In this thesis, different designated simulation cases, including different position of inclusion (an embedded synthetic tumor), size, and contrast ratio of absorption and reduced scattering coefficient of inclusion respect to background were used for verifying the results of forward problem (light intesity and phase shift of photon density Φ(r)) and developed reconstruction algorithm. For case under condition by using 80 mm diameter breast-like phantom as a geometry, tumor with diameter of 20 mm, located at x = 15 mm, y = 0 mm, and z = 40 mm. The same reduced scattering coefficient and different absorption coefficients were performed first, then the same absorption coefficient and different reduced scattering coefficients were employed thereafter. The evaluation results show that, the greater absorption coefficient, the greater light intesity differences between homogenous and inhomogeneous condition. On the other hand, the greater reduced scattering coefficient, the greater light intensity and phase shift differences between homogenous and inhomogeneous condition. They also show that, the reconstruction results with same reduced scattering coefficient and different absorption coefficients will lead to over estimation of absorption coefficient. On the other hand, under estimation is occured for reduce scattering coefficient. By acquiring the reconstruction results of same absorption coefficient and different reduced scattering coefficients, they indicate absorption coefficients will lead to significant over estimation if the contrast ratio of reduced scattering coefficient for inclusion and background is equal to 2. Moreover, under estimation is occurred for reduced scattering coefficient.

For breast model from MRI image (Magnetic Resonance Imaging)/NMR (Nuclear Magnetic Resonance) imaging with tumor embedded within the model had diameter of 20 mm, located at x = 0 mm, y = -15 mm, and z = 30 mm, the evaluation results demonstrate that, with same reduced scattering coefficient and different absorption coefficients will lead to over estimation of absorption coefficient. The greater absorption coefficient of inclusion in exact conditon, the greater over estimation of absorption coefficient for inclusion respect to background in reconstructed image. On the other hand, under estimation is occured for reduced scattering coefficient. In addition, the reconstruction results of same absorption coefficient and different reduced scattering coefficients. They indicate absorption coefficients will lead to over estimation if the contrast ratio of reduced scattering coefficient for inclusion and background is equal to 2.5. Futhermore, under estimation is occurred for reduced scattering coefficient.
關鍵字(中) ★ 三維擴散光學斷層影像
★ 有限元素法
★ Tikhonov 正規化
★ 乳癌檢測
★ 影像重 建
關鍵字(英) ★ three-dimensional diffuse optical tomography
★ finite element method
★ Tikhonov regularization
★ breast cancer detection
★ image reconstruction
論文目次 摘要 i

Abstract ii

Acknowledgement iv

Contents v

List of Figures vii

List of Tables xiv

1 Introduction 1
1.1 Background 1
1.2 Literature review 4
1.2.1 Diffuse optical tomography 4
1.2.2 DOI reconstruction through DICOM images transferred 3D solid models 6
1.3 Aim and outline of this thesis 7

2 Forward problem 9
2.1 Diffusion equation 9
2.2 Forward solution to the diffusion equation __ the finite element method 10

3 Inverse solution 14
3.1 Formulation of inverse problem in DOI 14
3.2 Construction of the Jacobian matrix 15
3.2.1 The direct method 16
3.2.2 The adjoint method 17
3.3 Normalization of Jacobian matrix 17
3.4 Tikhonov regularization 18?
4 Simulation and verification 20
4.1 Simulation data __ model information is embedded 20
4.1.1 Breast-like model 20
4.1.2 Breast-like model __ following investigation 24
4.1.3 Breast model from MRI image 35
4.2 Image reconstruction 45
4.3 Reconstructions of simulated data 48
4.3.1 Image reconstruction for breast-like model 48
4.3.2 Image reconstruction for breast model from MRI image 56
4.4 Reconstructed limitation 63
4.4.1 Breast-like model image limitation 64
4.4.2 Breast model from MRI image limitation 71
4.5 CSD correction of absorption images 78
4.5.1 Absorption images correction for breast-like model 79
4.5.2 Absorption images correction for breast model from MRI image 85
4.6 Minima factors of reconstructed image 91
4.6.1 Taguchi method 92
4.6.2 Minima factors for breast-like model 93
4.6.3 Minima factors for breast model from MRI image 97

5 Conclusion and future work 100
5.1 Conclusion 100
5.2 Future work 102

Babliography 103
參考文獻 [1] World Health Statistics 2016. Geneva, World Health Organization, (2016).
[2] L. Tabar, M. F. Yen, B. Vitak, H. T. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year followup before and after introduction of screening,” Lancet 361, 1405–1410 (2003).
[3] J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Tenyear risk of false positive screening mammograms and clinical breast examinations,” The New England Journal of Medicine 338, 1089–1096 (1998).
[4] P. T. Huynh, A. M. Jarolimek, and S. Day, “The false-negative mammogram,” Radiographics 18, 1137–1154 (1998).
[5] A. Gibson, and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).
[6] D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hbden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[7] J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[8] H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073- 3093 (2009).
[9] S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems 25, 123010 (2009).
[10] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[11] B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency-domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[12] S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[13] K. D. Paulsen, and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[14] M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[15] M. A. O’Leary, “Imaging with diffuse photon density waves,” Dissertation in Physics, University of Pennsylvania (1996).
[16] J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278-3287 (2001).
[17] S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[18] H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711-732 (2008).
[19] K. Uludag, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” NeuroImage 22, 583–589 (2004).
[20] A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. Hillman, S. Arridge, and A. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[21] M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt. 13, 054037 (2008).
[22] Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[23] Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided threedimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[24] M. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[25] Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[26] Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinki, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate part ii: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[27] V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[28] H. Dehghani, B. Pogue, B. Brooksby, S. Srinivasan, and K. Paulsen, “Image reconstruction strategies using dual modality MRI-NIR data,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2006), pp. 682–685.
[29] P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54, 6457–6476 (2009).
[30] A. Li, G. Boverman, Y. Zhang, D. Brooks, E. Miller, M. Kilmer, Q. Zhang, E. Hillman,
and D. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948–1956 (2005).
[31] S. Srinivasan, B. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. Wells, S.
Poplack, and K. Paulsen, “Near-infrared characterization of breast tumors in vivo using
spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4, 513–526 (2005).
[32] J. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, “Inverse problems with
structural prior information,” Inverse Probl. 15, 713–729 (1999).
[33] A. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).
[34] A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Technol. 18, 87-95 (2007).
[35] B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[36] H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423-12434 (2008).
[37] N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695-13708 (2007).
[38] Y. Pei, H. Graber, and R. Barbour, “Normalized-constraint algorithm for minimizing
inter-parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001).
[39] Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427-5437 (2002).
[40] M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780-17791 (2008).
[41] M. C. Pan, C. H. Chen, L. Y. Chen, M. C. Pan, and Y. M. Shyr, “Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images,” J. Biomed. Opt. 13, 024022-1-024022-14 (2008).
[42] H. Vavadi and Q. Zhu, “Automated data selection method to improve robustness of diffuse optical tomography for breast cancer imaging,” Bio. Opt. Express 7, 4007-4020 (2016).
[43] L. Y. Chen, M. C. Pan, C. C. Yan, and M. C. Pan, “Wavelength optimization using available laser diodes in spectral near-infrared optical tomography,” Appl. Opt. 55, 5729-5737 (2016).
[44] J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Bio. Opt. Express 7, 3784-3794 (2016).
[45] M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19, 040801-1- 040801-15 (2014).
[46] M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B.W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007-1-086007-10 (2013).
[47] M. Malinsky, M. Jermyn, B. W. Pogue, and H. Dehghani, “An online modeling and image reconstruction tool for optical imaging based on NIRFAST,” in Biomedical Optics and 3-D Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD27.
[48] C. M. Aasted, M. A. Yucel, R. J. Cooper, J, Dubb, D. Tsuzuki, L. Becerra, M. P. Petkov, D. Borsook, I. Dan, D. A. Boas, “Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial,” Neurophotonics 2, 020801-1- 020801-16 (2015).
[49] M. Mustra, K. Delac, and M. Grgic, “Overview of the DICOM standard,” in 50th International Symposium ELMAR (ELMAR, 2008), pp. 39-44.
[50] D. R. Elshahat, M. Morsy, and M. A. Abo_Elsoud, “DICOM image enhancement of mammogram breast cancer,” Int. J. for Res. in Appl. Sc. & Eng. Tech. 4, 300-311 (2016).
[51] L. A. Dobrzanski and L. Reimann, “Digitization procedure of creating 3D model of dental bridgework reconstruction,” J. of Achieve. in Mater. and Manufac. Eng. 55, 469-476 (2012).
[52] M. Ay, T. Kubat, C. Delilbasi, B. Ekici, H. E. Yuzbasioglu, and S. Hartomacioglu, “3D Bio-Cad modeling of human mandible and fabrication by rapid-prototyping technology,” Usak University J. of Mater. Sc. 2, 135-145 (2013).
[53] C. Bendigeri and S. Patil, “Developing 3D Finite element model of Head using Magnetic resonance imaging and algorithm developed in MATLAB,” Int. J. of Eng. Res. And Gen. Sc. 4, 303-307 (2016).
[54] Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142-1145.
[55] C. C. Yan, “Three-dimensional near infrared diffuse optical tomography,” Master thesis in Mechanical Engineering, National Central University (2016).
[56] T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially
resolved, steady-state diffuse reflectance for the noninvasive determination of tissue
optical properties in vivo,” Med. Phys., 19(4), 879-888 (1992).
[57] W. Egan, “Optical properties of inhomogeneous materials: Applications to geology,
astronomy chemistry, and engineering,” Academic Press Inc, London, UK, (1979).
[58] S. R. Arridge, and M. Schweiger, “Photon-measurement density functions. Part 2: Finite element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[59] M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging: Part I,” Inverse Probl. 23, 1115–1133 (2007).
[60] M. Guven, B. Yazici, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging: Part II,” Inverse Probl. 23, 1135–1160 (2007).
[61] P. K. Yalavarthy, “A generalized least-squares minimization method for near infrared diffuse optical tomography,” Dissertation in Engineering, Dartmouth College (2007).
[62] M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419-7428 (1998).
[63] M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Opt. Express 15, 11095-11116 (2007).
[64] L. Y. Chen, M. C. Pan, and M. C. Pan, “Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis,” Opt. Rev. 20, 19-25 (2013).
[65] R. K. Roy, “A primer on the taguchi method,” Soc. of Manufac. Eng., Michigan, USA, 2nd edition, (2010).
指導教授 潘敏俊(PAN, MIN-CHUN) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明