博碩士論文 103327029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.220.24.57
姓名 梁雅婷(Ya-Ting Liang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用擴散光學方程式解析解於造影量測系統驗證之研究
(Study on applying analytical solution of diffusion equation to the verification of diffuse optical imaging system)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 女性乳癌之發生率逐年增加,針對乳癌篩檢可藉由常規檢測機制診斷,可及早發現病灶並提早治療,以降低死亡率,本實驗室所發展近紅外光擴散光資訊斷層造影系統 (Near-Infrared Diffuse Optical Tomography, NIR-DOT)相對於常規之檢測方式,其優點為可排除輻射疑慮及顯示功能性影像。該造影系統利用近紅外光穿透組織後造成的光能量衰減及相位延遲資訊,藉由反算程式以重建組織內部之光學係數影像,依據正常組織與病灶組織在近紅外光波段下,其吸收係數及散射係數間的差異作為辨別之基準,用以協助乳癌檢測。然而在成像前,其實驗數據須利用均質標準塊進行校正,但在人體試驗中,實驗數據並無均質組織作為校正之基準,故其標準塊校正方式有所限制。本研究基於擴散方程式,由量測結果中光能量衰減及相位差變化之關係,推估組織的均質光學特性。
此造影系統可分為光資訊掃描裝置及光學影像模擬,本研究主要針對光資訊掃描裝置進行校正及驗證,先針對所使用之元件進行特性探討,作為後續量測時校正的依據;以擴散光學方程式之結果作為驗證基準,在滿足理論假設之條件下,由光電量測模組進行光子密度波實驗,量測兩種已知光學係數之高散射介質,可獲得不同位置的光能量衰減及相位延遲,並與理論結果比較,得出實驗量測之結果與擴散方程式吻合,以確認光電量測模組之穩定性;除了上述之實驗架構,亦利用實驗室一進一出環形掃描裝置量測一有邊界之待測物,並以有限元素法模擬實驗量測條件之結果做為比較,結果顯示其兩者趨勢相符,用以驗證光學掃描裝置之可信度。
由實驗中獲得不同位置對應於光能量衰減及相位延遲的斜率關係,將斜率帶入理論解析式中以推估光學係數,所得到之結果與待測物的光學係數接近,以確認光學掃描裝置之準確性。因此,透過實驗量測結果與理論解析式,可推估未知光學係數待測物之吸收係數與散射係數,而所推估之光學係數可作為影像重建流程中所需之初始值,以協助影像重建。
摘要(英) According to the report from Health Promotion Administration (HPA), the incidence rate and mortality rate of women breast cancer increase gradually within a decade in Taiwan. Comparative to the common breast cancer detection method, such as X-ray mammography, near-infrared diffuse optical tomography (NIR-DOT) provides functional images and reduce the concerns of radiation. Due to different characteristics of optical properties, tumor tissue can be distinguished from normal tissue. NIR DOT uses near-infrared light to image tissue and measures the transmitted light from the tissue surface. Using the reconstruction algorithm with the measured data can estimate the optical coefficients (absorption coefficients and scattering coefficients) of the tissue. A standard homogenous phantom with optical properties similar to the object being imaging is used as the reference to calibrate the measured data before the reconstruction. In clinical trials, however, it doesn’t have this phantom for calibration. Therefore, bases on diffusion equation, this study will estimate the homogenous/bulk optical coefficients of the tissue by using measured data of the attenuation of the light intensity and the delay of the phase for facilitating calibration.
For the verification of the measurement system, we have to confirm the characteristic of the components used in NIR-DOT imaging system. From the characteristics of these components, optimal configuration can be set during the experiment. We use two different phantoms with known optical coefficients for verification of NIR-DOT imaging system under two measurement conditions. In the measurement condition of using uniform and infinite medium (without effect of boundary condition), the light intensity attenuates and the phase delays with increasing the distance between the source and the detector. The result of the experiment and the computed data from the derived analytical expressions based on the diffusion equation are close and show that the measurement system is stable. In the measurement condition of using circular phantom (with effect of boundary condition), the trend of result from NIR-DOT imaging system is also similar to the simulated data from solving the diffusion equation with the finite element method. With the previous results, it verifies the validity of measurement system.
According to the experimental data, the slopes of attenuation of light intensity and increase of phase delay with source-detector separation distance can be obtained. These slopes can further be used to estimate the optical coefficients based on the derived analytical expressions. Since the validity of our imaging system had been verified through the measurement of phantom with known optical properties, the homogeneous/bulk optical coefficients of tissue can be estimated from measured data, and be used as the initial value for reconstruction.
關鍵字(中) ★ 擴散光學斷層掃描
★ 系統驗證
關鍵字(英) ★ Diffuse Optical Tomography
★ System Validation
論文目次 摘要 V
Abstract VI
致謝VIII
目錄IX
圖目錄 XI
表目錄 XIV
第一章 緒論1
1-1 研究動機與目的1
1-2 文獻探討3
1-3 研究範疇5
第二章 理論基礎 8
2-1 組織光學特性 8
2-2 組織擴散光學檢測機制 11
2-3 擴散光學理論 12
第三章 光電量測模組17
3-1 光學檢測機制 17
3-2 元件特性 19
3-2-1 光源端元件 19
3-2-2 光偵測器端元件 20
3-2-2 電訊號處理元件 27
3-3 光電量測模組 33
第四章 檢測驗證與結果討論35
4-1 理論計算結果 35
X
4-2 光子密度波實驗 38
4-2-1 連續波光源 38
4-2-2 強度調變光源 40
4-3 關聯性探討44
4-4 仿乳假體試驗 48
第五章 結論與未來展望 57
參考文獻 59
參考文獻 [1] 衛生福利部國民健康署,102癌症登記年報,中華民國衛生福利部,第11頁。
[2] 衛生福利部國民健康署,102年癌症登記報告,中華民國衛生福利部。
[3] 衛生福利部國民健康署,乳癌篩檢簡介,中華民國衛生福利部。
[4] 許居誠,乳房影像診斷之發展,中華民國癌症醫學會雜誌,2008
[5] 張允中:乳癌診斷的新尖兵—談乳房磁振造影。
取自https://www.ntuh.gov.tw/BC/Lecture/DocLib1/
[6] C. K. Kuhl, "Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer," Journal of Clinical Oncology, vol. 23, no. 33, pp. 8469-8476, 2005.
[7] L. V. Wang and H. I. Wu, “Biomedical optics: principles and imaging,” New Jersey, 2007.
[8] M. Cutler, “Transillumination of the breast,” Annals of surgery, vol. 93, no. 1, pp. 223-234, 1931.
[9] J. Bsis-Vandervliet, "Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy," Journal of biomedical optics, vol. 4, no. 4, pp. 392-396, 1999.
[10] B. L. Horecker, "The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” Journal of biological chemistry, vol. 148, no. 1, pp. 173-183, 1942.
[11] A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proceedings of the National Academy of Sciences, vol. 104, no. 10, pp. 4014-4019, 2006.
[12] 陳俊宇,「輔助X光乳房攝影之擴散光學量測系統設計與驗證」,國立中央大學,碩士論文,民國99年。
[13] 邱健忠,「近紅外光頻域式量測系統於固態乳房仿體之量測與分析研究」,國立中央大學,碩士論文,民國100年。
[14] 簡祐軒,「仿乳腫瘤特徵之近紅外光頻域式量測系統分析與驗證」,國立中央大學,碩士論文,民國102年。
[15] 游釗銘,「頻域式擴散光學造影之乳房掃描暨量測系統研究」,國立中央大學,博士論文,民國104年。
[16] 林沂凌,「平板式擴散光學斷層造影系統之乳房腫瘤檢測研究」,國立中央大學,碩士論文,民國105年。
[17] L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, "Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate," Science (New York, N.Y.), vol. 253, no. 5021, pp. 769-771, 1991.
[18] A. Ishimaru, "Diffusion of a pulse in densely distributed scatters," JOSA, vol. 68, no. 8, pp. 1045-1050, 1978.
[19] J. B. Fishkin, E. Gratton, M. J. vande Ven, and W. W. Mantulin, "Diffusion of intensity-modulated near-infrared light in turbid media," International Society for Optics and Photonics, vol. 1431, pp. 122-135, 1991.
[20] J. B. Fishkin and E. Gratton, "Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," JOSA A, vol. 10, no. 1, pp. 127-140, 1993.
[21] S. Fantini, M. Franceschini, J. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Applied Optics, vol. 33, no. 22, pp.5204-5213, 1994.
?
[22] T. O. Mcbride, "Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis," Dartmouth College, PhD Thesis, 2001.
[23] T. Tu, Y. Chen, J. Zhang, X. Intes and B. Chance, “Analysis on performance and optimization of frequency-domain near-infrared instruments,” Journal of Biomedical Optics, vol. 7, no. 4, pp. 643-649, 2002.
[24] G. Zaccanti, S. Del Bianco and F. Martelli, "Measurements of optical properties of high-density media," Applied Optics, vol. 42, no. 19, pp. 4023-4030, 2003.
[25] B. Cletus, “Wavelength tunable frequency domain photon migration spectrometer for tissue-like media,” The University of Waikato, PhD Thesis, 2010.
[26] Y. Fan, H. Zhao, X. Zhou, J. Liang, T. Wang and F. Gao, “Calibration methods of near-infrared frequency domain diffused light measurement system,” SPIE BiOS, International Society for Optics and Photonics., vol. 7891, paper # 78910Y, 2011.
[27] 陳亮瑜,「Reconstruction and evaluation of diffuse optical imaging」,國立中央大學,博士論文,民國102年。
[28] A. G. Alkholidi and K. S. Altowij, "Contemporary issues in wireless communications," InTech, Croatia, 2014.
[29] H. Ramachandran and A. Narayanan, "Two-dimensional imaging through turbid media using a continuous wave light source," Optics Communications, vol. 154, no. 5, pp. 255-260, 1998.
[30] P. Taroni, "Diffuse optical imaging and spectroscopy of the breast: A brief outline of history and perspectives," Photochem. Photobiol. Sci., vol. 11, no. 2, pp. 241-250, 2012.
[31] J. V. Garcia, F. Zhang and P. C. Ford, “Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide,” Phil. Trans. R. Soc. A., vol. 371, no. 1995, pp. 1-25, 2013.
[32] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Reports on Progress in Physics, vol. 73, no. 7, paper # 076701, 2010.
[33] A. H Hielscher, “Optical tomographic imaging of small animals,” Current Opinion in Biotechnology, vol. 16, pp.79-88, 2005.
[34] V. Nadhira, D. Kurniadi, E. Juliastuti and A. Sutiswan, “Study of continuous-wave domain fluorescence diffuse optical tomography for quality control on agricultural produce,” AIP Conf. Proc., vol. 1589, pp. 276-280, 2014.
[35] A. Ishimaru, “Wave propagation and scattering in random media: V. 1: Single scattering and transport theory,” New York: Academic Press, 1978.
[36] A. Ishimaru, "Diffusion of light in turbid material," Applied Optics, vol. 28, no. 12, pp. 2210-2215, 1989.
[37] K. M. Case and P. F. Zweifel, "Linear transport theory," Addison-Wesley, 1967.
[38] Hamamatsu Photonics K.K. Electron Tube Division, “Photomultiplier tube modules,” p. 86, 2015.
[39] M. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. Pogue and K. Paulsen, “Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy,” Biomedical Optics Express, vol. 3, no. 10, pp. 2339-2352, 2012.
[40] F. Marki, and C. Marki, "Marki microwave mixer basics Primer a Tutorial for RF & microwave mixers," Technical Note of Marki Microwave Inc., 2011.
[41] R. Michels, F. Foschum and A. Kienle, "Optical properties of fat emulsions," Optics Express, vol. 16, no. 8, pp. 5907-5925, 2008.
[42] T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Physics in medicine and biology, vol. 47, no. 16, pp. 2847-2861, 2002.
[43] A. B. Konovalov, E. A. Genina and A. N. Bashkatov, “Diffuse optical mammotomography: state-of-the-art and prospects,” Journal of Biomedical Photonics & Engineering, vol. 2, no. 2, paper # 020202, 2016
[44] 吳浚晟,「乳房組織光學係數量測 暨資料庫建立之研究」,國立中央大學,碩士論文,民國104年。
指導教授 潘敏俊 審核日期 2017-4-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明