參考文獻 |
[1]E. A. Olsen, "Female pattern hair loss," Journal of the American Academy of Dermatology, vol. 45, pp. S70-S80, 2001.
[2]F. C. Rossetti, L. V. Depieri, and M. V. L. B. Bentley, Confocal laser scanning microscopy as a tool for the investigation of skin drug delivery systems and diagnosis of skin disorders: INTECH Open Access Publisher, 2013.
[3]R. DasGupta and E. Fuchs, "Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation," Development, vol. 126, pp. 4557-4568, 1999.
[4]B. Lehner, B. Sandner, J. Marschallinger, C. Lehner, T. Furtner, S. Couillard-Despres, et al., "The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival," Cell and tissue research, vol. 345, pp. 313-328, 2011.
[5]T. Schepeler, M. E. Page, and K. B. Jensen, "Heterogeneity and plasticity of epidermal stem cells," Development, vol. 141, pp. 2559-2567, 2014.
[6]K. Stenn and R. Paus, "Controls of hair follicle cycling," Physiological reviews, vol. 81, pp. 449-494, 2001.
[7]P. Rompolas, E. R. Deschene, G. Zito, D. G. Gonzalez, I. Saotome, A. M. Haberman, et al., "Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration," Nature, vol. 487, pp. 496-499, 2012.
[8]A. Uchugonova, R. M. Hoffman, M. Weinigel, and K. Koenig, "Watching stem cells in the skin of living mice noninvasively," Cell Cycle, vol. 10, pp. 2017-2020, 2011.
[9]M. Ito, K. Kizawa, K. Hamada, and G. Cotsarelis, "Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen," Differentiation, vol. 72, pp. 548-557, 2004.
[10]V. Greco, T. Chen, M. Rendl, M. Schober, H. A. Pasolli, N. Stokes, et al., "A two-step mechanism for stem cell activation during hair regeneration," Cell stem cell, vol. 4, pp. 155-169, 2009.
[11]Y. V. Zhang, J. Cheong, N. Ciapurin, D. J. McDermitt, and T. Tumbar, "Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells," Cell stem cell, vol. 5, pp. 267-278, 2009.
[12]E. Legue and J.-F. Nicolas, "Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors," Development, vol. 132, pp. 4143-4154, 2005.
[13]R. Kopan, J. Lee, M.-H. Lin, A. J. Syder, J. Kesterson, N. Crutchfield, et al., "Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors," Developmental biology, vol. 242, pp. 44-57, 2002.
[14]H. Kulessa, G. Turk, and B. L. Hogan, "Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle," The EMBO journal, vol. 19, pp. 6664-6674, 2000.
[15]J. Kamimura, D. Lee, H. P. Baden, J. Brissette, and G. P. Dotto, "Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential," Journal of Investigative Dermatology, vol. 109, pp. 534-540, 1997.
[16]S. Ghazizadeh and L. B. Taichman, "Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin," The EMBO journal, vol. 20, pp. 1215-1222, 2001.
[17]E. Legue, I. Sequeira, and J.-F. Nicolas, "Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages," Development, vol. 137, pp. 569-577, 2010.
[18]Y. Liu, S. Lyle, Z. Yang, and G. Cotsarelis, "Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge," Journal of Investigative Dermatology, vol. 121, pp. 963-968, 2003.
[19]C. S. Trempus, R. J. Morris, C. D. Bortner, G. Cotsarelis, R. S. Faircloth, J. M. Reece, et al., "Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34," Journal of Investigative Dermatology, vol. 120, pp. 501-511, 2003.
[20]K. K. Youssef, A. Van Keymeulen, G. Lapouge, B. Beck, C. Michaux, Y. Achouri, et al., "Identification of the cell lineage at the origin of basal cell carcinoma," Nature cell biology, vol. 12, pp. 299-305, 2010.
[21]V. Jaks, N. Barker, M. Kasper, J. H. Van Es, H. J. Snippert, H. Clevers, et al., "Lgr5 marks cycling, yet long-lived, hair follicle stem cells," Nature genetics, vol. 40, pp. 1291-1299, 2008.
[22]J. A. Nowak, L. Polak, H. A. Pasolli, and E. Fuchs, "Hair follicle stem cells are specified and function in early skin morphogenesis," Cell stem cell, vol. 3, pp. 33-43, 2008.
[23]Y.-C. Hsu, H. A. Pasolli, and E. Fuchs, "Dynamics between stem cells, niche, and progeny in the hair follicle," Cell, vol. 144, pp. 92-105, 2011.
[24]I. Brownell, E. Guevara, C. B. Bai, C. A. Loomis, and A. L. Joyner, "Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells," Cell stem cell, vol. 8, pp. 552-565, 2011.
[25]M. E. Page, P. Lombard, F. Ng, B. Gottgens, and K. B. Jensen, "The epidermis comprises autonomous compartments maintained by distinct stem cell populations," Cell Stem Cell, vol. 13, pp. 471-482, 2013.
[26]S. Claudinot, M. Nicolas, H. Oshima, A. Rochat, and Y. Barrandon, "Long-term renewal of hair follicles from clonogenic multipotent stem cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 14677-14682, 2005.
[27]M. Ito, Y. Liu, Z. Yang, J. Nguyen, F. Liang, R. J. Morris, et al., "Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis," Nature medicine, vol. 11, pp. 1351-1354, 2005.
[28]V. Levy, C. Lindon, Y. Zheng, B. D. Harfe, and B. A. Morgan, "Epidermal stem cells arise from the hair follicle after wounding," The FASEB Journal, vol. 21, pp. 1358-1366, 2007.
[29]F. Liu, A. Uchugonova, H. Kimura, C. Zhang, M. Zhao, L. Zhang, et al., "The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla," Cell Cycle, vol. 10, pp. 830-839, 2011.
[30]M. Minsky, "Microscopy apparatus," ed: Google Patents, 1961.
[31]W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science, vol. 248, pp. 73-76, 1990.
[32]P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, "Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy," science, vol. 322, pp. 1065-1069, 2008.
[33]P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annual review of biomedical engineering, vol. 2, pp. 399-429, 2000.
[34]J. Huisken and D. Y. Stainier, "Selective plane illumination microscopy techniques in developmental biology," Development, vol. 136, pp. 1963-1975, 2009.
[35]W. Lukosz, "Optical systems with resolving powers exceeding the classical limit," JOSA, vol. 56, pp. 1463-1471, 1966.
[36]W. Lukosz, "Optical systems with resolving powers exceeding the classical limit. II," JOSA, vol. 57, pp. 932-941, 1967.
[37]M. Saxena, G. Eluru, and S. S. Gorthi, "Structured illumination microscopy," Advances in Optics and Photonics, vol. 7, pp. 241-275, 2015.
[38]M. Neil, R. Ju?kaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Optics letters, vol. 22, pp. 1905-1907, 1997.
[39]L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, "Structured illumination microscopy of a living cell," European Biophysics Journal, vol. 38, pp. 807-812, 2009.
[40]R. Fiolka, M. Beck, and A. Stemmer, "Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator," Optics letters, vol. 33, pp. 1629-1631, 2008.
[41]Q. Song, K. Isobe, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, et al., "Multiphoton 3D structured illumination microscopy for enhanced axial resolution in deep imaging," in Conference on Lasers and Electro-Optics/Pacific Rim, 2015, p. 27H2_2.
[42]P. W. Winter, P. Chandris, R. S. Fischer, Y. Wu, C. M. Waterman, and H. Shroff, "Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy," Optics express, vol. 23, pp. 5327-5334, 2015.
[43]R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, "Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination," Proceedings of the National Academy of Sciences, vol. 109, pp. 5311-5315, 2012.
[44]N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, "Fluorescence endomicroscopy with structured illumination," Optics express, vol. 16, pp. 8016-8025, 2008.
[45]D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, et al., "Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device," Journal of biomedical optics, vol. 18, pp. 060503-060503, 2013.
[46]D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, et al., "DMD-based LED-illumination Super-resolution and optical sectioning microscopy," Scientific reports, vol. 3, 2013.
[47](2012). DLPR LightCrafter? Evaluation Module (EVM) User′s Guide.
[48]J. A. Rodrigo and T. Alieva, "Fast control of temporal and spatial coherence properties of microscope illumination using DLP projector," in SPIE BiOS, 2015, pp. 93360F-93360F-6.
[49]N. Chakrova, B. Rieger, and S. Stallinga, "Development of a DMD-based fluorescence microscope," in SPIE BiOS, 2015, pp. 933008-933008-11.
[50]"measured LightCrafter LED spectra," 2014.
[51]ORCA-Flash4.0 V2 Digital CMOS camera C11440-22CU.
[52]Semrock 515 nm blocking edge BrightLineR long-pass filter.
[53]Semrock 532 nm EdgeBasic? best-value long-pass edge filter.
[54]D. Karadagli? and T. Wilson, "Image formation in structured illumination wide-field fluorescence microscopy," Micron, vol. 39, pp. 808-818, 2008.
[55]Thermal Fisher Scientific Fluorescence Spectraviewer.
[56]徐鈺, "DLP-Based Hyperspectral Imaging via Optical Sectioning Microscopy," 2016.
|