博碩士論文 103329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:13.59.82.60
姓名 吳以璿(Yi-Hsuan Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱
(Combinatorial Engineering Toward Improved Photoelectrochemcial-water-oxidation Activity of Hematite Photoanode)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫氣被預期將代替化石燃料作為未來社會的主要能量來源。由於其具有高重量能量密度,科學家希望可大量生產、運輸。在幾個可能的途徑中,太陽光分解水,─ 特別是光電化學水分解。在太陽光照射下施加小額偏壓,可完全分解水,並分別在陽極和陰極處釋放氧和氫 ─ 特別被寄予厚望。
  本論文分為三個部分。第一部分解釋光電化學電池(PEC)的原理,包括半導體光電化學,半導體 - 液體介面和電荷載子物理的知識。雖然完整的水分解包含氧化和還原兩部分,本研究聚焦在陽極氧化水的四個電子轉移反應。,著眼於可見光吸收的適當的帶隙寬度、較高的理論光轉氫效率、極好的反應穩定性、不含重金屬、低成本的特色,我們選擇赤鐵礦 (a-Fe2O3) 作為目標材料。
  第二部分研究著重在異價離子摻雜。我們在水熱法 (Hydrothermal synthesis) 合成過程中,摻入In3 +、Mn2+、Ca2 +或Ti4 +作為p / n型摻雜劑,並發現鈦離子摻雜的樣品有最佳的效果。同時,藉由高溫燒結 (> 550 ℃) 讓FTO(F:SnO2)的 Sn 從背面摻雜入Fe2O3,是解決其低導電性的常見方式。研究發現經由Sn4+摻入,在AM1.5G 光照、1.23VRHE的條件下,樣品光電流從近乎0.0 mA / cm2增加到0.42 mA / cm2;藉由Ti4+ 的摻雜,可進一步提升光電流至0.87 mA /cm2。透過EIS,XPS和國家同步輻射中心XAS分析,結果歸因於材料中的Fe2-xTixO3奈米微結構,有效提升Fe-O、Fe-M (M = Fe、Ti) 結構對稱性,(降低再結合速率)延長電子存活壽命以及擴散長度。
  第三部分研究是透過浸潤法 (Dip coating)將磷酸(Pi)奈米顆粒或薄膜裝飾於表面。我們發現,相對低溫燒結 ( 300℃ ) 產生的表面磷酸覆蓋層有利於從空間電荷層尾部到固液介面的電洞傳輸。磷酸可橋接和取代表面-OH並佔據內在表面狀態。這種非金屬處理不具有塊材摻雜的效果。在EIS中,在低頻率範圍消除的半橢圓曲線,展現出Pi裝飾的表面效果;在J-V圖中,原已摻雜 Ti 的樣品並未因 Pi 的覆蓋而增益光電化學性質,甚至有弱化效果。這也解釋磷酸層作用於表面的現象。從XRD圖譜特徵峰判讀磷酸鹽層含有 Kx+2(PxO3x+1) 化合物。
本綜合研究探討Ti4+ 摻雜在氧化鐵的作用以及磷酸鹽在表面的功能,也重新提出幾個性質分析討論。Ti摻雜的樣品中,Ti4+ 不作為電子供給者(由Mott-Schotky),但具有調整近表面化學組成,並在氧化鐵內形成Fe-Ti-O奈米微結構。由磷酸鹽製成的磷,對於從塊材中到固液界面的電洞傳輸有所幫助,但我們不認為磷酸鹽會深入摻雜於氧化鐵晶格中。
摘要(英) Hydrogen has been expected to replace fossil fuel as major energy fuels in future human’s community. With its high gravimetric energy density, grid production and transportation are desired. Within several possible pathways, solar water splitting, especially photoelectrochemical water splitting, can entirely utilize water to evolve oxygen and hydrogen at anode and cathode respectively beyond sunlight illumination with small external bias. This technique has been intensively studied and expected as promising method to link up fossil-fuel community in future.
In this thesis, the study is separated into three parts. First part interprets conceptual knowledge of photoelectrochemical cell (PEC), including general knowledge of semiconductor photoelectrochemistry, semiconductor-liquid junction, and physics of charge carriers. Though a complete water splitting combines oxidation and reduction, we here focus on four-electron process of water oxidation at photoanode. Comparing with several transition metal oxides such as TiO2, BiVO4, and WO3, hematite (-Fe2O3) is selected as target material owning to its proper band-gap width for visible-light absorption, dominating theoretical quantum efficiency and stability within reaction, environmental friendly character, and low-cost for production.
Second part of study lies on aliovalent-ion doping. Foreign-ion doping to hematite has been approved to enhance conductivity and lifetime of charge carriers. We wet-chemically impregnated In3+, Mn2+, Ca2+ and Ti4+ as p-/n-type dopants during hydrothermal synthesis and found promising improvement with titanium ion doping. Meanwhile, the self Sn-doping from back contact (F:SnO2) is an intrinsic way to eliminate drawbacks of synthesized hematite. With Sn4+ assisted, the photocurrent increases from nearly 0.0 mA/cm2 to 0.42 mA/cm2 at 1.23 VRHE under AM 1.5G illumination. Additional improvement was by help of Ti4+ which enhances photocurrent to 0.87 mA/cm2 at 1.23 VRHE under light harvesting. By EIS, XPS, and XAS, the results are ascribed to near-surface nano TiO2 and/or composition heterogeneous (Fe2-xTixO3) in material which may prolong electron survival lifetime as well as diffusion length.
The third part of study was to decorate surface with phosphate (Pi) nanoparticles or thin film by dip coating. The surface overlayer produced by mild-annealing was found to facilitate hole transportation from tail of space-charge layer to liquid site. Phosphorus can bridge and replace surface –OH and take up intrinsic surface states. This nonmetal treatment presents no effect of bulk doping and set its own debate on semiconductor-liquid junction. In EIS, the eliminated semi-ellipsoid exhibits surface effect of Pi decoration; In J-V diagram the overlayer also emphasize its role in reaction by evidence of ignorable increase of photocurrent in Ti-doped (surface-activated) electrodes. XRD patterns indexes Kx+2(PxO3x+1) complex as composition of overlayer itself.
This study addresses a different conclusion toward debate on role of Ti4+ in doped hematite and capability of phosphate ion in bulk iron-oxide. Ti4+ in Ti-doped Fe2O3 didn’t act as electron donor (by Mott-Schotky) but tune near-surface composition and formed TiO2 nanostructure within Fe-O crystal. Phosphorus made by phosphate salt serves sound ability for hole transportation from bulk to solid-liquid interface. However, phosphate surface doping is not suggested. The conclusion contributes to renewed suggestions on several aspects of Fe2O3 photoanode.
關鍵字(中) ★ 氧化鐵
★ 光電化學分解水
★ Ti 摻雜
★ 磷酸鹽
關鍵字(英) ★ hematite
★ hydrothermal synthesis
★ chemical impregnation
★ Ti-doping
★ phosphate
論文目次 Chapter 1 Motivation, Energetics, Physics of Photoelectrochemcial Water Splitting and Target Materials 1
Introduction 2
1.1 Pathways to generate hydrogen ─ why photoelectrochemical water splitting? 3
1.2 Concept of PEC 5
1.2.1 General knowledge of semiconductor photoelectrochemistry 5
1.2.2 Reaction of PEC (Single cell) 6
1.2.3 Formation of semiconductor/liquid junction (SCLJ) 9
1.2.4 Structure of semiconductor/liquid junction (SCLJ) 11
1.2.5 Energetics of Semiconductor/Liquid Junctions under Illumination 15
1.2.6 Physics of charge carriers 19
1.3 General Properties of PEC materials 21
1.4 Transition Metal Oxides as Photoanodes 23
1.5 TiO2 25
1.6 WO3 26
1.7 BiVO4 26
1.8 a-Fe2O3 28
1.8.1 Crystal structure and optical properties of hematite 28
1.8.2 Photoelectrochemical features of hematite 31
1.8.3 Popular synthesis methodologies and reference review 33
1.9 Summary and Conclusion 40
1.10 Reference 44
Chapter 2 Aliovalent-ion Doping Engineering by hydrothermal synthesis 50
2.1 Introduction 51
2.1.1 Doping and defect chemistry 51
2.1.2 Kroger-Vink notation 53
2.1.3 Effect of aliovalent-ion doping 56
2.2 Experimental Section 67
2.2.1 Materials 67
2.2.2 Fabrication of pristine Fe2O3 film 67
2.2.3 Doping aliovalent ions by chemical impregnation 68
2.2.4 Photoelectrochemical measurement 68
2.2.5 Material Characterization 70
2.3 Results and Discussion 71
2.3.1 General synthesis mechanism 71
2.3.2 Sintering process optimization (Pristine Fe2O3) 74
2.3.3 Effect of aliovalence-ion doping 84
2.4 Conclusion 114
2.5 Reference 116
Chapter 3 Effect of Surface Phosphate Overlayer 122
3.1 Introduction 123
3.2 Experimental Section 131
3.2.1 Fabrication of Pi-modified electrodes 131
3.2.2 Photoelectrochemical measurement 131
3.2.3 Material Characterization 132
3.3 Results and Discussion 133
3.3.1 Optimizing post-sintering temperature 133
3.3.2 Crystal-structure characterization 135
3.3.3 X-ray Photoelectron Spectroscopy study 136
3.3.4 Optical and SEM analysis 139
3.3.5 Photoelectrochemical and electrochemical analysis 143
3.3.6 Evidence from X-ray Absorption spectroscopy 153
3.4 Conclusion 158
3.5 Reference 159

參考文獻 1. R. Van de Krol, M. Gratzel, Photoelectrochemical hydrogen production, Vol. 90, Springer, 2012.
2. J. Barber, Chemical Society Reviews 2009, 38, 185-196.
3. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. Gunner, W. Junge, D. M. Kramer, A. Melis, science 2011, 332, 805-809.
4. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55-60.
5. J. Barber, Inorganic chemistry 2008, 47, 1700-1710.
6. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chemical reviews 2010, 110, 6446-6473.
7. O. Khaselev, J. A. Turner, Science 1998, 280, 425-427.
8. A. Fujishima, nature 1972, 238, 37-38.
9. B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angewandte Chemie International Edition 2012, 51, 9128-9131.
10. J. R. McKone, A. P. Pieterick, H. B. Gray, N. S. Lewis, Journal of the American Chemical Society 2012, 135, 223-231.
11. M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen,Journal of the American Chemical Society 2013, 135, 3733-3735.
12. Y. Nakato, Y. Egi, M. Hiramoto, H. Tsubomura, The Journal of Physical Chemistry 1984, 88, 4218-4222.
13. Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy & Environmental Science 2013, 6, 347-370.
14. N. Sato, Electrochemistry at metal and semiconductor electrodes, Elsevier, 1998.
15. S. Srinivasan, Fuel cells: from fundamentals to applications, Springer Science & Business media, 2006.
16. P. Salvador, Journal of applied physics 1984, 55, 2977-2985.
17. N. S. Lewis, Journal of The Electrochemical Society 1984, 131, 2496-2503.
18. J. M. Bolts, M. S. Wrighton, The Journal of Physical Chemistry 1976, 80, 2641-2645.
19. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, K. Sivula, Chemical Science 2011, 2, 737-743.
20. M. L. Rosenbluth, C. M. Lieber, N. S. Lewis, Applied Physics Letters 1984, 45, 423-425.
21. B. M. Kayes, H. A. Atwater, N. S. Lewis, Journal of applied physics 2005, 97, 114302.
22. H. Gerischer, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 150, 553-569.
23. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, J. Glasscock, International journal of hydrogen energy 2006, 31, 1999-2017.
24. JB. Parkinson, Accounts of Chemical Research 1984, 17, 431-437.
25. S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, A. Z. Weber, Energy & Environmental Science 2012, 5, 9922-9935.
26. J. H. Kim, J. S. Lee, Energy and Environment Focus 2014, 3, 339-353.
27. A. G. Tamirat, J. Rick, A. A. Dubale, W.-N. Su, B.-J. Hwang, Nanoscale Horizons 2016.
28. S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, C. B. Mullins, Nano letters 2011, 12, 26-32.
29. C. Das, P. Roy, M. Yang, H. Jha, P. Schmuki, Nanoscale 2011, 3, 3094-3096.
30. M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Nano letters 2012, 12, 1503-1508.
31. B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, P. Yang, Journal of the American Chemical Society 2013, 135, 9995-9998.
32. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, X. Zheng, Nano letters 2011, 11, 4978-4984.
33. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano letters 2011, 11, 3026-3033.
34. S. Mishra, D. Du, E. Jeanneau, F. Dappozze, C. Guillard, J. Zhang, S. Daniele, Chemistry–An Asian Journal 2016, 11, 1658-1663.
35. Y. Liu, S. Shen, F. Ren, J. Chen, Y. Fu, X. Zheng, G. Cai, Z. Xing, H. Wu, C. Jiang, Nanoscale 2016, 8, 10642-10648.
36. B. D. Sherman, J. J. Bergkamp, C. L. Brown, A. L. Moore, D. Gust, T. A. Moore, Energy & Environmental Science 2016, 9, 1812-1817.
37. B. Reichman, A. J. Bard, Journal of The Electrochemical Society 1979, 126, 583-591.
38. A. Pennisi, F. Simone, C. Lampert, Solar energy materials and solar cells 1992, 28, 233-247.
39. F. Di Quarto, A. Di Paola, C. Sunseri, Electrochimica Acta 1981, 26, 1177-1184.
40. C. Santato, M. Ulmann, J. Augustynski, The Journal of Physical Chemistry B 2001, 105, 936-940.
41. S. Berger, H. Tsuchiya, A. Ghicov, P. Schmuki, Applied Physics Letters 2006, 88.
42. Y. Guo, X. Quan, N. Lu, H. Zhao, S. Chen, Environmental science & technology 2007, 41, 4422-4427.
43. www.aist.go.jp/aist_e/latest_research/2010/20100517/20100517.html
44. A. Kudo, K. Ueda, H. Kato, I. Mikami, Catalysis Letters 1998, 53, 229-230.
45. Z. Jiang, Y. Liu, T. Jing, B. Huang, X. Zhang, X. Qin, Y. Dai, M.-H. Whangbo, The Journal of Physical Chemistry C 2016, 120, 2058-2063.
46. K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H. Arakawa, Chemical Communications 2003, 2908-2909.
47. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, The Journal of Physical Chemistry B 2006, 110, 11352-11360.
48. M. Long, W. Cai, H. Kisch, The Journal of Physical Chemistry C 2008, 112, 548-554.
49. H. Luo, A. H. Mueller, T. M. McCleskey, A. K. Burrell, E. Bauer, Q. Jia, The Journal of Physical Chemistry C 2008, 112, 6099-6102.
50. K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H. Sugihara, Chemistry Letters 2010, 39, 17-19.
51. W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Journal of Physics D: Applied Physics 2010, 43, 405402.
52. L. Osterlund, L. Vayssieres, John Wiley & Sons: Singapore, 2009, pp. 189-238.
53. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy & Environmental Science 2011, 4, 4046-4051.
54. J. A. Seabold, K.-S. Choi, Journal of the American Chemical Society 2012, 134, 2186-2192.
55. N. Y. Dzade, A. Roldan, N. H. de Leeuw, Minerals 2014, 4, 89-115.
56. L. A. Marusak, R. Messier, W. B. White, Journal of Physics and Chemistry of Solids 1980, 41, 981-984.
57. P. Bailey, Journal of Applied Physics 1960, 31, 39.
58. S. Tandon, J. Gupta, Spectroscopy Letters 1970, 3, 297-301.
59. J. Tossell, D. Vaughan, K. Johnson, Nature 1973, 244, 42-45.
60. D. M. Sherman, Geochimica et Cosmochimica Acta 2005, 69, 3249-3255.
61. J. K. Leland, A. J. Bard, Journal of Physical Chemistry 1987, 91, 5076-5083.
62. M. S. Pre?vot, K. Sivula, The Journal of Physical Chemistry C 2013, 117, 17879-17893.
63. T. Lindgren, L. Vayssieres, H. Wang, S.-E. Lindquist, Chemical physics of nanostructured semiconductors 2003, 83-110.
64. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin, V. A. Szalai, The Journal of Physical Chemistry C 2012, 116, 15290-15296.
65. A. G. Joly, J. R. Williams, S. A. Chambers, G. Xiong, W. P. Hess, D. M. Laman, Journal of applied physics 2006, 99, 053521.
66. F. Morin, Physical Review 1951, 83, 1005.
67. A. Bosman, H. Van Daal, Advances in Physics 1970, 19, 1-117.
68. R. Chang, J. Wagner, Journal of the American Ceramic Society 1972, 55, 211-213.
69. J. B. Goodenough, Progress in solid state chemistry 1971, 5, 145-399.
70. http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html
71. K. L. Hardee, A. J. Bard, Journal of the Electrochemical Society 1976, 123, 1024-1026.
72. K. Itoh, J. M. Bockris, Journal of the Electrochemical Society 1984, 131, 1266-1271.
73. H. E. Prakasam, O. K. Varghese, M. Paulose, G. K. Mor, C. A. Grimes, Nanotechnology 2006, 17, 4285.
74. I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Gra?tzel, The Journal of Physical Chemistry C 2008, 113, 772-782.
75. D. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Energy & Environmental Science 2011, 4, 1759-1764.
76. J. Y. Zheng, M. J. Kang, G. Song, S. I. Son, S. P. Suh, C. W. Kim, Y. S. Kang, CrystEngComm 2012, 14, 6957-6961.
77. C. H. Bak, K. Kim, K. Jung, J.-B. Kim, J.-H. Jang, Journal of Materials Chemistry A 2014, 2, 17249-17252.
78. J. Brillet, M. Gratzel, K. Sivula, Nano letters 2010, 10, 4155-4160.
79. G. Wang, Y. Ling, D. A. Wheeler, K. E. George, K. Horsley, C. Heske, J. Z. Zhang, Y. Li, Nano letters 2011, 11, 3503-3509.
80. S. K. Mohapatra, S. E. John, S. Banerjee, M. Misra, Chemistry of Materials 2009, 21, 3048-3055.
81. Y. Lin, S. Zhou, S. W. Sheehan, D. Wang, Journal of the American Chemical Society 2011, 133, 2398-2401.
82. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano letters 2011, 11, 2119-2125.

======================================

Addison-Wesley Reading, MA, 1987.
2. R. Van de Krol, M. Gratzel, Photoelectrochemical hydrogen production, Vol. 90, Springer, 2012.
3. A. Kay, I. Cesar, M. Gratzel, Journal of the American Chemical Society 2006, 128, 15714-15721.
4. F. L. Souza, K. P. Lopes, P. A. Nascente, E. R. Leite, Solar Energy Materials and Solar Cells 2009, 93, 362-368.
5. S. Mohapatra, K. Pradhan, L. Artola, P. Sahu, Materials Science in Semiconductor Processing 2015, 31, p. 455-462.
6. Y. Liang, C. S. Enache, R. van de Krol, International Journal of Photoenergy 2008, 2008.
7. C. Jorand Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustynski, R. Cerny, The Journal of Physical Chemistry B 2005, 109, 13685-13692.
8. D. Cao, W. Luo, M. Li, J. Feng, Z. Li, Z. Zou, CrystEngComm 2013, 15, 2386-2391.
9. I. S. Cho, H. S. Han, M. Logar, J. Park, X. Zheng, Advanced Energy Materials 2015.
10. A. Bak, W. Choi, H. Park, Applied Catalysis B: Environmental 2011, 110, 207-215.
11. A. Kleiman-Shwarsctein, Y.-S. Hu, A. J. Forman, G. D. Stucky, E. W. McFarland, The Journal of Physical Chemistry C 2008, 112, 15900-15907.
12. Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, Journal of the American Chemical Society 2012, 134, 5508-5511.
13. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano letters 2011, 11, 2119-2125.
14. M. Gaudon, N. Pailhe, J. Majimel, A. Wattiaux, J. Abel, A. Demourgues, Journal of Solid State Chemistry 2010, 183, 2101-2109.
15. R. H. Goncalves, E. R. Leite, Energy & Environmental Science 2014, 7, 2250-2254.
16. C. Miao, S. Ji, G. Xu, G. Liu, L. Zhang, C. Ye, ACS applied materials & interfaces 2012, 4, 4428-4433.
17. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Journal of the American Chemical Society 2010, 132, 17343-17345.
18. S. Y. Chiam, M. H. Kumar, P. S. Bassi, H. L. Seng, J. Barber, L. H. Wong, ACS applied materials & interfaces 2014, 6, 5852-5859.
19. S. Shen, P. Guo, D. A. Wheeler, J. Jiang, S. A. Lindley, C. X. Kronawitter, J. Z. Zhang, L. Guo, S. S. Mao, Nanoscale 2013, 5, 9867-9874.
20. P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V. R. Satsangi, international journal of hydrogen energy 2011, 36, 2777-2784.
21. Y. Fu, C. L. Dong, W. Y. Lee, J. Chen, P. Guo, L. Zhao, S. Shen, ChemNanoMat 2016.
22. M. N. Huda, A. Walsh, Y. Yan, S.-H. Wei, M. M. Al-Jassim, J. Appl. Phys 2010, 107, 123712.
23. N. T. Hahn, C. B. Mullins, Chemistry of Materials 2010, 22, 6474-6482.
24. H. O. Finklea, 1988.
25. J. A. Glasscock, P. R. Barnes, I. C. Plumb, N. Savvides, The Journal of Physical Chemistry C 2007, 111, 16477-16488.
26. O. Zandi, B. M. Klahr, T. W. Hamann, Energy & Environmental Science 2013, 6, 634-642.
27. J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun, S.-T. Lee, Journal of Applied Physics 2012, 112, 084312.
28. P. Liao, M. C. Toroker, E. A. Carter, Nano letters 2011, 11, 1775-1781.
29. I. Cesar, A. Kay, J. A. Gonzalez Martinez, M. Gratzel, Journal of the American Chemical Society 2006, 128, 4582-4583.
30. Y. Zhang, S. Jiang, W. Song, P. Zhou, H. Ji, W. Ma, W. Hao, C. Chen, J. Zhao, Energy & Environmental Science 2015, 8, 1231-1236.
31. L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Chemistry of materials 2001, 13, 233-235.
32. E. A. Werner, ibid., 113, 84 (1918).
33. E. A. Werner, ibid., 117, 1078 (1920).
34. W. H. Shaw, J. J. Bordeaux, Journal of the American Chemical Society 1955, 77, 4729-4733.
35. C. Wei, Z. Nan, Materials Chemistry and Physics 2011, 127, 220-226.
36. A. Handa, J. Kobayashi, Y. Ujihira, Applications of surface science 1985, 20, 581-593.
37. H.-F. Shao, X.-F. Qian, J. Yin, Z.-K. Zhu, Journal of Solid State Chemistry 2005, 178, 3130-3136.
38. C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, The Journal of Physical Chemistry B 2006, 110, 17806-17812.
39. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gratzel, Journal of the American Chemical Society 2010, 132, 7436-7444.
40. P. S. Shinde, S. H. Choi, Y. Kim, J. Ryu, J. S. Jang, Physical Chemistry Chemical Physics 2016, 18, 2495-2509.
41. R. Morrish, M. Rahman, J. MacElroy, C. A. Wolden, ChemSusChem 2011, 4, 474-479.
42. A. Annamalai, A. Subramanian, U. Kang, H. Park, S. H. Choi, J. S. Jang, The Journal of Physical Chemistry C 2015, 119, 3810-3817.
43. E. S. Cho, M. J. Kang, Y. S. Kang, Physical Chemistry Chemical Physics 2015, 17, 16145-16150.
44. R. t. Shannon, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 1976, 32, 751-767.
45. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin, V. A. Szalai, The Journal of Physical Chemistry C 2012, 116, 15290-15296.
46. A. G. Tamirat, W.-N. Su, A. A. Dubale, C.-J. Pan, H.-M. Chen, D. W. Ayele, J.-F. Lee, B.-J. Hwang, Journal of Power Sources 2015, 287, 119-128.
47. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochimica Acta 2014, 129, 358-363.
48. E. Courtin, G. Baldinozzi, M. T. Sougrati, L. Stievano, C. Sanchez, C. Laberty-Robert, Journal of Materials Chemistry A 2014, 2, 6567-6577.
49. S. Shen, C. X. Kronawitter, D. A. Wheeler, P. Guo, S. A. Lindley, J. Jiang, J. Z. Zhang, L. Guo, S. S. Mao, Journal of Materials Chemistry A 2013, 1, 14498-14506.
50. S. Shen, C. X. Kronawitter, D. A. Wheeler, P. Guo, S. A. Lindley, J. Jiang, J. Z. Zhang, L. Guo, S. S. Mao, Journal of Materials Chemistry A 2013, 1, 14498-14506.
51. A. B. Gambhire, M. K. Lande, S. B. Rathod, B. R. Arbad, K. N. Vidhate, R. S. Gholap, K. R. Patil, Arabian Journal of Chemistry 2011.
52. B. M. Klahr, A. B. Martinson, T. W. Hamann, Langmuir 2010, 27, 461-468.
53. M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, N. S. Lewis, Progress in Inorganic Chemistry, Volume 41 1994, 21-144.
54. D. R. Lide, CRC handbook of chemistry and physics, Vol. 85, CRC press, 2004.
55. L. Steier, I. Herraiz?Cardona, S. Gimenez, F. Fabregat?Santiago, J. Bisquert, S. D. Tilley, M. Gratzel, Advanced Functional Materials 2014, 24, 7681-7688.
56. J. Glasscock, P. Barnes, I. Plumb, A. Bendavid, P. Martin, Thin Solid Films 2008, 516, 1716-1724.
57. K. Sivula, F. Le Formal, M. Gratzel, ChemSusChem 2011, 4, 432-449.
58. G. Wang, Y. Ling, D. A. Wheeler, K. E. George, K. Horsley, C. Heske, J. Z. Zhang, Y. Li, Nano letters 2011, 11, 3503-3509.
59. S. Shinde, R. Bansode, C. Bhosale, K. Rajpure, Journal of Semiconductors 2011, 32, 013001.
60. J. R. Macdonald, John Wiley & Sons, New York, 1987.
61. C. Schiller, W. Strunz, Electrochimica Acta 2001, 46, 3619-3625.
62. J.-B. Jorcin, M. E. Orazem, N. Pebere, B. Tribollet, Electrochimica Acta 2006, 51, 1473-1479.
63. Z. Kerner, T. Pajkossy, Journal of Electroanalytical Chemistry 1998, 448, 139-142.
64. P. M. Chee, P. P. Boix, H. Ge, F. Yanan, J. Barber, L. H. Wong, ACS applied materials & interfaces 2015, 7, 6852-6859.
65. G. Brug, A. Van Den Eeden, M. Sluyters-Rehbach, J. Sluyters, Journal of electroanalytical chemistry and interfacial electrochemistry 1984, 176, 275-295.
66. O. Jayakumar, I. Gopalakrishnan, S. Kulshreshtha, A. Gupta, K. Rao, D. Louzguine-Luzgin, A. Inoue, P.-A. Glans, J.-H. Guo, K. Samanta, Applied Physics Letters 2007, 91, 052504.
67. Y. -G. Lin, Y.-K. Hsu, Y.-C. Lin, Y.-C. Chen, Electrochimica Acta 2016, 213, 898-903.
68. J. Crocombette, M. Pollak, F. Jollet, N. Thromat, M. Gautier-Soyer, Physical Review B 1995, 52, 3143.
69. F. De Groot, M. Grioni, J. Fuggle, J. Ghijsen, G. Sawatzky, H. Petersen, Physical Review B 1989, 40, 5715.
70. A. Gloter, J. Ingrin, D. Bouchet, C. Colliex, Physical Review B 2000, 61, 2587.
71. Z. Wu, S. Gota, F. Jollet, M. Pollak, M. Gautier-Soyer, C. Natoli, Physical Review B 1997, 55, 2570.

=========================================

1. H. G. Kim, P. H. Borse, J. S. Jang, E. D. Jeong, O.-S. Jung, Y. J. Suh, J. S. Lee, Chemical Communications 2009, 5889-5891.
2. Y. Matsumoto, M. Omae, K. Sugiyama, E. Sato, Journal of Physical Chemistry 1987, 91, 577-581.
3. A. A. Tahir, K. Wijayantha, M. Mazhar, V. McKee, Thin Solid Films 2010, 518, 3664-3668.
4. K. J. McDonald, K.-S. Choi, Chemistry of Materials 2011, 23, 4863-4869.
5. C. Miao, S. Ji, G. Xu, G. Liu, L. Zhang, C. Ye, ACS applied materials & interfaces 2012, 4, 4428-4433.
6. R. L. Spray, K. J. McDonald, K.-S. Choi, The Journal of Physical Chemistry C 2011, 115, 3497-3506.
7. S. Shen, C. X. Kronawitter, J. Jiang, S. S. Mao, L. Guo, Nano Research 2012, 5, 327-336.
8. Y. Zhang, S. Jiang, W. Song, P. Zhou, H. Ji, W. Ma, W. Hao, C. Chen, J. Zhao, Energy & Environmental Science 2015, 8, 1231-1236.
9. L. Wang, C.-Y. Lee, P. Schmuki, Electrochemistry Communications 2013, 30, 21-25.
10. R. Franking, L. Li, M. A. Lukowski, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Energy & Environmental Science 2013, 6, 500-512.
11. L. Xi, P. S. Bassi, S. Y. Chiam, W. F. Mak, P. D. Tran, J. Barber, J. S. C. Loo, L. H. Wong, Nanoscale 2012, 4, 4430-4433.
12. Z. L. Wang, Journal of Physics: Condensed Matter 2004, 16, R829.
13. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, K. Sivula, Chemical Science 2011, 2, 737-743.
14. L. Steier, I. Herraiz?Cardona, S. Gimenez, F. Fabregat?Santiago, J. Bisquert, S. D. Tilley, M. Gratzel, Advanced Functional Materials 2014, 24, 7681-7688.
15. D. K. Zhong, D. R. Gamelin, Journal of the American Chemical Society 2010, 132, 4202-4207.
16. J. Y. Zheng, S. I. Son, T. K. Van, Y. S. Kang, RSC Advances 2015, 5, 36307-36314.
17. G. M. Carroll, D. R. Gamelin, Journal of Materials Chemistry A 2016, 4, 2986-2994.
18. G. M. Carroll, D. K. Zhong, D. R. Gamelin, Energy & Environmental Science 2015, 8, 577-584.
19. J. Y. Kim, J. W. Jang, D. H. Youn, G. Magesh, J. S. Lee, Advanced Energy Materials 2014, 4.
20. Z. Hu, Z. Shen, J. C. Yu, Chemistry of Materials 2016, 28, 564-572.
21. M. Wang, H. Wang, Q. Wu, C. Zhang, S. Xue, International Journal of Hydrogen Energy 2016, 41, 6211-6219.
22. K. Liu, H. Wang, Q. Wu, J. Zhao, Z. Sun, S. Xue, Journal of Power Sources 2015, 283, 381-388.
23. K. Itoh, T. Matsubayashi, E. Nakamura, H. Motegi, Journal of the Physical Society of Japan 1975, 39, 843-844..
24. Y. Yin, Y. Hu, P. Wu, H. Zhang, C. Cai, Chemical Communications 2012, 48, 2137-2139.
25. J.-M. Jehng, A. M. Turek, I. E. Wachs, Applied Catalysis A: General 1992, 83, 179-200.
26. H. Jiang, Q. Wang, S. Zang, J. Li, Q. Wang, Journal of hazardous materials 2013, 261, 44-54.
27. H. Natori, K. Kobayashi, M. Takahashi, Journal of oleo science 2009, 58, 389-394.
28. D. W. Kim, S. C. Riha, E. J. DeMarco, A. B. Martinson, O. K. Farha, J. T. Hupp, ACS nano 2014, 8, 12199-12207.
29. K. L. Hardee, A. J. Bard, Journal of the Electrochemical Society 1977, 124, 215-224.
30. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, P. R. Trevellick, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1983, 79, 2027-2041.
31. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Journal of the American Chemical Society 2012, 134, 4294-4302.
32. O. Zandi, B. M. Klahr, T. W. Hamann, Energy & Environmental Science 2013, 6, 634-642.
33. J. Bisquert, Physical Chemistry Chemical Physics 2003, 5, 5360-5364.
34. L. Li, R. Stanforth, Journal of colloid and interface science 2000, 230, 12-21.
35. Y. Arai, D. Sparks, Journal of Colloid and Interface Science 2001, 241, 317-326.
36. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Journal of Colloid and Interface Science 2006, 298, 602-608.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明