博碩士論文 103328022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.119.105.239
姓名 ?駿宇(Chun-Yu Wen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 粉粒體於儲槽排放行為及氣泡現象之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 直渠道顆粒流之顆粒密度分離效應★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 顆粒的流動行為中包含固體顆粒體與其間隙氣體的相互作用,當封閉儲槽
在排放微細的顆粒體時,間隙氣體及逆向空氣效應之影響將造成不穩定的排放行
為,在顆粒體粒徑小於200 μm的情形下可見氣體團聚以氣泡的方式穿越顆粒床
體,類似於氣泡式流體化床內的現象。
本論文旨在研究微細顆粒體於封閉儲槽之排放行為及此一自然形成之氣泡
現象,探討不同粒徑區間之顆粒床體之排放行為及氣泡現象之動態。本研究之實
驗採用可視化設計之類二維封閉儲槽,將大小介於32至212 μm之玻璃珠分為七組
不同粒徑區間之實驗顆粒體進行排放實驗,探討粒徑產生之影響,並量測其排放
流率、儲槽內之氣壓變化等因素進行分析及討論氣泡現象之成因、特性及各實驗
參數之關聯。
實驗結果說明顆粒粒徑的改變將影響氣泡現象及排放行為,當粒徑愈大,逆
向空氣便愈容易在顆粒床內部滲透流動,產生的氣體阻礙效應及氣泡現象也較弱,
所形成氣泡尺寸較小,以及氣泡更容易在顆粒床內部消散等。但在小粒徑的配置
下,氣泡甚至會移動至顆粒床頂端產生爆裂飛濺現象。氣泡之移動速度與顆粒床
之流動性有關,當顆粒床的流動性愈好,則氣泡具有愈快的移動速度加快,與顆
粒床的粒徑成正比的關係。
此外,本研究利用理想氣體方程式及影像分析方法計算空氣之進入率,在本
實驗之實驗架構下,空氣進入率的變動與氣泡現象的動態有著良好的對應關係,
進一步說明了氣泡現象的動態、顆粒床高的變化與內部的氣壓之間的相互關聯性。
摘要(英) The granular flow behavior includes the interaction of solid granules and
interstitial fluid therein, usually as air or gas. The discharge rate of granules in a silo is
affected by the reverse way interstitial fluid. In particular, unstable discharge rate and
air bubble can be found in the discharge process of the particle size less than 200μm in
a closed-top silo. The air bubble effect in a silo is similar to the air bubble in a fluidized
bed.
The purpose of this study is to investigate the discharge and the bubble effect of fine
powder in a closed-top silo. The experimental particle size from 32 to 212 micron and
a transparent closed top silo are used in the experiments of this study, and the
experimental particles are sieved to seven different particle size ranges. The mass flow
rate during discharge and the pressure in the silo above the granular bed were measured.
A high speed camera was used to photograph the discharge process and the bubble
dynamics.
The air bubble effect in granular bed is a complex multiphase flow. The permeability
of granular bed is affected by the particle size. Hence the experiment results showed
that the change of particle size of granular bed affects the dynamic of air bubble and
discharge behavior. Bubble burst behavior and particle splashing can be found when
the air bubble moved to the top of granular bed in the discharge process. The results of
this study showed that the particle size influences the bubble size and bubble velocity.
Bubbles with faster velocity and smaller size are generated in granular bed with coarser
particle size, and vice versa. We also calculated the air input rate into the silo and the
permeability to explain the bubble dynamics and the effect of particle size.
關鍵字(中) ★ 儲槽流
★ 漏斗流
★ 粉粒體
★ 氣泡
★ 多相流
★ 顆粒流體化
關鍵字(英) ★ Silo
★ Hopper
★ Powder
★ Bubble
★ Multiphase Flow
★ Fluidization
論文目次 誌謝................................................................................................................................ i
摘要............................................................................................................................... ii
Abstract ........................................................................................................................ iii
附表目錄....................................................................................................................... vi
附圖目錄...................................................................................................................... vii
第一章 緒論.................................................................................................................. 1
1.1 前言 ............................................................................................................................... 1
1.2 儲槽簡介 ........................................................................................................................ 2
1.3 研究相關文獻探討......................................................................................................... 4
1.4 研究動機及論文架構.................................................................................................... 12
第二章 實驗方法........................................................................................................ 20
2.1 實驗設備 ....................................................................................................................... 20
2.2 實驗步驟 ....................................................................................................................... 22
2.3 分析方法 ....................................................................................................................... 24
2.4 誤差分析 ....................................................................................................................... 27
第三章 結果與討論.................................................................................................... 34
3.1 封閉儲槽中的排放行為 ............................................................................................... 34
3.1.1 開頂儲槽與閉頂儲槽之瞬時質量流率差異 ........................................................ 34
3.1.2 累積排放質量及排放穩定度 ................................................................................. 37
3.1.3 排放之不穩定性的原因討論 ................................................................................ 38
3.2 封閉儲槽中的氣泡現象 ............................................................................................... 39
3.2.1 儲槽內壓力之討論 ................................................................................................. 39
3.2.2 氣泡現象與相關參數之討論: A 族顆粒體 ........................................................... 40
3.2.3 氣泡現象與相關參數之討論: B 族顆粒體 ........................................................... 43
3.2.4 氣泡移動速度之討論 ............................................................................................ 44
3.2.5 空氣損失指數之討論 ............................................................................................. 45
3.2.6 氣泡現象之總結 .................................................................................................... 46
第四章 結論................................................................................................................ 92
參考文獻...................................................................................................................... 94
參考文獻 [1] R. M. Nedderman, “Statics and Kinematics of Granular Materials,” Cambridge
University Press, Cambridge, 1992.
[2] J. K. Prescott, R. A. Barnum, “On Powder Flowability,” Pharmaceutical Technology,
2000.
[3] W. A. Beverloo, H. A. Leniger, J. van de Velde, “The flow of granular solids through
orifices,” Chemical Engineering Science, Vol. 15, pp. 260-269, 1961.
[4] I. Zuriguel, A. Garcimartin, D. Maza, L. A. Pugnaloni, and J. M. Pastor, “Jamming
during the discharge of granular matter from a silo,” Physical Review E, Vol. 71, 2005.
[5] H. A. Janssen, “Versuche uber Getreidedruck in Silozellen,” Verein Deutscher
Ingenieure, Vol. 39, pp. 1045-1049, 1895.
[6] A. Samadani, A. Pradhan, A. Kudrolli., “Size segregation of granular matter in silo
discharges,” Physical Review E, Vol. 60, pp.7203-7209, 1999.
[7] D. Geldart, J. C. Williams, “Flooding from hoppers: identifying powders likely to
give problems,” Powder Technology, Vol 43, pp. 181-183, 1985.
[8] R. L. Brown, J. C. Richards, P. V. Danckwerts, “Principles of powder mechanics,”
Pergamon Press., New York., 1970.
[9] P. A. Shamlou, “Handling of Bulk Solids,” Butterworths, London, 1988.
[10] M. Sperl, "Experiments on corn pressure in silo cells-- Translation and Comment
of Janssen′s Paper from 1895,” Granular Matter, Vol. 8, pp.59-65, 2006.
[11] J. R. Johanson, “The Use of Flow-Corrective Inserts in Bins,” Journal of
Engineering for Industry, Vol. 88, pp. 224-230, 1966.
[12] B. J. Crewdson, A. L. Ormond, R. M. Nedderman, “Air-impeded discharge of fine
particles from a hopper,” Powder Technology, Vol. 16, pp. 197-207, 1977.
[13] T. M. Verghese, R. M. Nedderman, “The Discharge of Fine Sands from Conical
Hoppers,” Chemical Engineering Science, Vol. 50, pp. 3143-3153, 1995.
[14] J. A. H. de Jong, Q. E. J. J. M. Hoelen, “Cocurrent gas and particle flow during
pneumatic discharge from a bunker through an orifice,” Powder Technology, Vol. 12,
pp. 201-208, 1975.
[15] J. R. Johanson, “Method of Calculating the Rate of Discharge from Hoppers and
Bins,” Transactions of the Society of Mining Engineers, Vol. 232, 1965
[16] X. L. Wu, K. J. Maloy, A. Hansen, M. Ammi, D. Bideau, “Why Hour Glasses Tick,”
Physical Review Letters, Vol. 71, pp. 1363-1366, 1993.
[17] T. L. Pennec, K. J. Maloy, A. Hansen, M. Ammi, D. Bideau, X. L. Wu, “Ticking
hour glasses: Experimental analysis of intermittent flow,” Physical Review E, Vol. 53,
pp. 2257-2264, 1996.
[18] T. L. Pennec, K. J. Maloy, E. G. Flekkoy, J. C. Messager, M. Ammi, “Silo hiccups:
Dynamic effects of dilatancy in granular flow,” Physics of Fluids, Vol. 10, pp. 3072-
3079 ,1998.
[19] S. S. Hsiau, C. C. Hsu, J. Smid, “The discharge of fine silica sands in a silo,”
Physics of Fluids, Vol. 22, 2010.
[20] Y. C. Chung, C. K. Lin, P. H. Chou, S. S. Hsiau, “Mechanical behaviour of a
granular solid and its contacting deformable structure under uni-axial compression –
Part I: Joint DEM–FEM modelling and experimental validation,” Chemical
Engineering Science, Vol. 144, pp. 404-420, 2016.
[21] B. K. Muite, M. L. Hunt, G. G. Joseph, “The effects of a counter-current interstitial
flow on a discharging hourglass,” Physics of Fluids, Vol. 16, pp. 3415-3425, 2004.
[22] T. A. Royal , J. W. Carson, “Fine Powder Flow Phenomena in Bins, Hoppers, and
Processing Vessels,” Presented at Bulk 2000: Bulk Material Towards the Year 2000,
London., 1991
[23] D. Geldart, “Types of Gas Fluidization,” Powder Technology, Vol. 7, pp. 285-292,
1973.
[24] D. Barletta, G. Donsi, G. Ferrari, M. Poletto, P. Russo, “Solid Flow Rate Prediction
in Silo Discharge of Aerated Cohesive Powders,” AIChE Journal, Vol. 53, pp. 2240-
2253, 2007.
[25] P. C. Carman, “Fluid flow through granular beds,” Transactions Institution of
Chemical Engineers, Vol. 15, pp.150-166, 1937.
[26] P. C. Carman, “Flow of gases through porous media,” Butterworths, London, 1956.
[27] P. N. Rowe, B. A. Partridge, “X-ray Study of Bubbles in Fluid Beds,” Transactions
of the Institute of Chemical Engineers, Vol. 43, T157, 1965.
指導教授 蕭述三(Hsiau, Shu-San) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明