博碩士論文 102328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.149.250.1
姓名 高宗民(Tsung-Min Gao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 奈米矽晶片於葡萄糖電化學檢測分析研究與電極應用
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 以自發性化學蝕刻法製備矽奈米結構成長控制之研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 二次金沉積奈米矽晶片對質譜檢測分析研究與應用
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 設計應力刺激微流體晶片以探討幹細胞的化學誘導分化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來生物感測器(biosensor)的應用越來越多,舉凡食品工業、環境監控與醫療保健都有其應用的例子,生物感測器有許多種檢測方式,而其中電化學分析(electrochemistry)因為有高靈敏度與良好的準確率等優勢,是最常被用來分析檢測的方式,本研究利用奈米矽結構作為電化學分析中工作電極的使用,並結合奈米金粒子用於葡萄糖的檢測,由於奈米金粒子能作為葡萄糖氧化還原反應的觸媒使用,以這個特點取代葡萄糖氧化?使用而製成無?電極,減少了氧化?活性影響電極壽命的限制,並且由於奈米矽結構擁有高表面積的特性,可以提高葡萄糖氧化還原反應的反應面積,藉此提升檢測分析的靈敏度。
本研究改變工作電極的製程參數,分析比較參數與檢測效果間的相關性,在結果中得知電極表面結構孔洞越大所能捕捉的奈米金粒子越多,電化學分析結果也越好,而另一方面電極表面的金含量多寡並不完全影響電化學分析結果的好壞,還有電極表面結構與奈米金粒子粒徑等影響因素。
由於無?電極無氧化?活性的限制,在檢測分析應用上較為廣泛,另外電化學分析工作電極欲檢測分析不同分析物時僅須改變反應平台,而奈米矽晶片所擁有的高表面積特性非常適合與不同反應平台結合,本研究將利用這些特點將奈米矽工作電極應用於微流道系統,未來將設計一多分析物連續長時間檢測系統。
摘要(英) Biosensor is a fully developed technology and used in many subject such as Medicine, Food engineering, and Environmental engineering. There are many detection ways for biosensing. Electrochemistry is the most common way because of the high sensitivity and accurate. In this study we used silicon nanostructure chip (nSi chip) for working electrode in electrochemistry. The high surface area of nSi chip can increase the sensitivity. And used gold nanoparticles (GNPs) for glucose sensing. GNPs can be the catalyst for glucose redox reactions. We used GNPs to replace the glucose oxidase (GOx) and made into non-enzymatic biosensor.
In this study we change the process parameters to change the chip structure and analyze the effect of electrochemistry. We found the pore size of the surface structure and the size of GNPs will affect the electrochemistry result.
Enzymatic sensors have some restrictions because of the enzyme activity but non-enzymatic sensors are not. And nSi chips are good for detect other sample. So we will used the microfluidic system for multi-analytic and long-term detection system.
關鍵字(中) ★ 奈米矽
★ 電化學晶片
★ 葡萄糖感測器
關鍵字(英)
論文目次 目錄
摘要………………………………………………………………………………i
Abstract……………………………………………………………...…………..ii
目錄…………………………………………………………………………..…iv
圖目錄……………………………………………………………………….....vii
表目錄…………………………………………………………………………..xi
第一章 簡介…………………………………………………………………….1
1-1生物感測器與葡萄糖感測器發展現況………………………………..1
1-1-1光學………………………………………………………………2
1-1-2光聲技術…………………………………………………………4
1-1-3比色法……………………………………………………………6
1-1-4表面等離子共振…………………………………………………8
1-1-5電化學……………………………………………………………9
1-2多孔矽工作電極………………………………………………………15
1-2-1電極材料………………………………………………………..16
1-2-2多孔金電極……………………………………………………..18
1-2-3多孔矽電極……………………........…………………………..21
1-2-4金粒子工作電極..........................................................................23
1-2-5平面式電極……………………………………………………..31
第二章 材料與方法…………………………………………………………...34
2-1實驗設備與材料………………………………………………………34
2-1-1實驗材料與藥品………………………………………………..34
2-1-2實驗設備與分析儀器…………………………………………..35
2-2實驗流程……………………………………………………………....36
2-3工作電極製程…………………………………………………………36
2-3-1前處理…………………………………………………………..37
2-3-2一次沉積………………………………………………………..38
2-3-3金屬輔助蝕刻…………………………………………………..39
2-3-4氧電漿表面處理………………………………………………..41
2-3-5二次沉積………………………………………………………..41
2-3-6晶片保存………………………………………………………..42
2-3-7氧化?電極……………………………………………………..43
2-4電化學分析……………………………………………………………43
2-4-1三極式系統……………………………………………………..43
2-4-2循環伏安法……………………………………………………..45
第三章 結果與討論…………………………………………………………...48
3-1金粒子催化機制………………………………………………………48
3-2工作電極接觸角量測…………………………………………………52
3-3晶片製程參數對電化學檢測之影響…………………………………53
3-3-1蝕刻時間對葡萄糖檢測之影響………………………………..53
3-3-2二次沉積時間對葡萄糖檢測之影響…………………………..62
3-3-3沉積金粉克數對葡萄糖檢測之影響…………………………..69
3-4工作電極反應平台……………………………………………………71
3-4-1葡萄糖氧化?電極……………………………………………..72
3-4-2硝酸銀蝕刻製程工作電極……………………………………..73
3-5微流道檢測系統設計…………………………………………………78
3-5-1平面式電極設計………………………………………………..78
3-5-2微流道檢測系統設計…………………………………………..81
第四章 結論與未來展望……………………………………………………...84
4-1結論……………………………………………………………………84
4-2未來展望………………………………………………………………85
附錄 循環伏安圖……………………………………………………………...86
第五章 文獻回顧…………………………………………………………….109
參考文獻 第五章 參考文獻

[1] 高. 張. 鄭建業, "葡萄糖與尿酸酵素電極生物感測器," 2013.
[2] E. Simon, "Biological and chemical sensors for cancer diagnosis," Measurement Science and Technology, vol. 21, p. 112002, 2010.
[3] S. Mansouri and J. S. Schultz, "A miniature optical glucose sensor based on affinity binding," Nature biotechnology, vol. 2, pp. 885-890, 1984.
[4] M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, "Optical methods for sensing glucose," Chem Soc Rev, vol. 40, pp. 4805-39, Sep 2011.
[5] J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski, and D. J. Birch, "Fluorescence-based glucose sensors," Biosens Bioelectron, vol. 20, pp. 2555-65, Jun 15 2005.
[6] M. Khan and S. Y. Park, "Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface," J Colloid Interface Sci, vol. 457, pp. 281-8, Nov 1 2015.
[7] H. S. A. Hugh A. MacKenzie, 1 Stephen Spiers,1 Yaochun Shen,1 and J. H. Scott S. Freeborn, 1 John Lindberg,1 and Peter Rae2, "Advances in Photoacoustic Noninvasive Glucose Testing," 1999.
[8] M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mantele, "In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy," Anal Chem, vol. 85, pp. 1013-20, Jan 15 2013.
[9] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, et al., "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles," Nature nanotechnology, vol. 2, pp. 577-583, 2007.
[10] L. Su, J. Feng, X. Zhou, C. Ren, H. Li, and X. Chen, "Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles," Anal Chem, vol. 84, pp. 5753-8, Jul 3 2012.
[11] C. Lu, X. Liu, Y. Li, F. Yu, L. Tang, Y. Hu, et al., "Multifunctional Janus Hematite-Silica Nanoparticles: Mimicking Peroxidase-Like Activity and Sensitive Colorimetric Detection of Glucose," ACS Appl Mater Interfaces, vol. 7, pp. 15395-402, Jul 22 2015.
[12] A. Hayat, W. Haider, Y. Raza, and J. L. Marty, "Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes," Talanta, vol. 143, pp. 157-61, Oct 1 2015.
[13] R. Ballerstadt and J. S. Schultz, "Kinetics of dissolution of Concanavalin A/Dextran sols in response to glucose measured by surface plasmon resonance," Sensors and Actuators B: Chemical, vol. 46, pp. 50-55, 1998.
[14] H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, and J. B. Pitner, "Direct detection of glucose by surface plasmon resonance with bacterial glucose/galactose-binding protein," Biosensors and Bioelectronics, vol. 19, pp. 653-660, 2004.
[15] J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, et al., "Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen," Biosens Bioelectron, vol. 69, pp. 128-34, Jul 15 2015.
[16] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962.
[17] S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, pp. 46-57, Jan 18 2006.
[18] J. Wang, "Electrochemical Glucose Biosensors," 2008.
[19] M. Guler, V. Turkoglu, and A. Kivrak, "A novel glucose oxidase biosensor based on poly([2,2′;5′,2′′]-terthiophene-3′-carbaldehyde) modified electrode," Int J Biol Macromol, vol. 79, pp. 262-8, Aug 2015.
[20] R. Sedghi and Z. Pezeshkian, "Fabrication of non-enzymatic glucose sensor based on nanocomposite of MWCNTs-COOH-Poly(2-aminothiophenol)-Au NPs," Sensors and Actuators B: Chemical, vol. 219, pp. 119-124, 2015.
[21] G. Suganthi, T. Arockiadoss, and T. S. Uma, "ZnS nanoparticles decorated graphene nanoplatelets as immobilisation matrix for glucose biosensor," Nanosystems: Physics, Chemistry, Mathematics, pp. 637-642, 2016.
[22] C. F. Lourenco, A. Ledo, J. Laranjinha, G. A. Gerhardt, and R. M. Barbosa, "Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain," Sensors and Actuators B: Chemical, vol. 237, pp. 298-307, 2016.
[23] C.-S. K. Jongwon Park, Minsu Choi, "Oxidase-Coupled Amperometric Glucose and Lactate SensorsWith Integrated Electrochemical Actuation System," 2006.
[24] O. Frey, S. Talaei, P. D. van der Wal, M. Koudelka-Hep, and N. F. de Rooij, "Continuous-flow multi-analyte biosensor cartridge with controllable linear response range," Lab Chip, vol. 10, pp. 2226-34, Sep 07 2010.
[25] S. H. Kim, A. Umar, and S.-W. Hwang, "Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application," Ceramics International, vol. 41, pp. 9468-9475, 2015.
[26] W. Li, R. Ouyang, W. Zhang, S. Zhou, Y. Yang, Y. Ji, et al., "Single Walled Carbon Nanotube Sandwiched Ni-Ag Hybrid Nanoparticle Layers for the Extraordinary Electrocatalysis toward Glucose Oxidation," Electrochimica Acta, vol. 188, pp. 197-209, 2016.
[27] C.-L. Hsu, J.-H. Lin, D.-X. Hsu, S.-H. Wang, S.-Y. Lin, and T.-J. Hsueh, "Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes," Sensors and Actuators B: Chemical, vol. 238, pp. 150-159, 2017.
[28] M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, "A comprehensive review of glucose biosensors based on nanostructured metal-oxides," Sensors (Basel), vol. 10, pp. 4855-86, 2010.
[29] U. Guth, W. Vonau, and J. Zosel, "Recent developments in electrochemical sensor application and technology—a review," Measurement Science and Technology, vol. 20, p. 042002, 2009.
[30] L. Y. Chen, X. Y. Lang, T. Fujita, and M. W. Chen, "Nanoporous gold for enzyme-free electrochemical glucose sensors," Scripta Materialia, vol. 65, pp. 17-20, 2011.
[31] X. Feng, H. Cheng, Y. Pan, and H. Zheng, "Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite," Biosens Bioelectron, vol. 70, pp. 411-7, Aug 15 2015.
[32] J.-H. Jin, N. K. Min, and S.-I. Hong, "Poly(3-methylthiophene)-based porous silicon substrates as a urea-sensitive electrode," Applied Surface Science, vol. 252, pp. 7397-7406, 2006.
[33] G.-X. Zhong, W.-X. Zhang, Y.-M. Sun, Y.-Q. Wei, Y. Lei, H.-P. Peng, et al., "A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode," Sensors and Actuators B: Chemical, vol. 212, pp. 72-77, 2015.
[34] G. Sanzo, I. Taurino, R. Antiochia, L. Gorton, G. Favero, F. Mazzei, et al., "Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose," Bioelectrochemistry, vol. 112, pp. 125-31, Dec 2016.
[35] C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, et al., "Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection," Biosens Bioelectron, vol. 66, pp. 350-5, Apr 15 2015.
[36] A. Uhlir and I. W. Uhlir, "Historical perspective on the discovery of porous silicon," physica status solidi (c), vol. 2, pp. 3185-3187, 2005.
[37] S. Dhanekar and S. Jain, "Porous silicon biosensor: current status," Biosens Bioelectron, vol. 41, pp. 54-64, Mar 15 2013.
[38] L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, et al., "DNA optical detection based on porous silicon technology: from biosensors to biochips," Sensors, vol. 7, pp. 214-221, 2007.
[39] J. Mo, Y. Liu, C. Liu, and Z. Jia, "Porous silicon based on multilayer dielectric-grating optical sensors with enhanced biosensing," physica status solidi (a), vol. 211, pp. 1651-1654, 2014.
[40] F. A. Harraz, "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, vol. 202, pp. 897-912, 2014.
[41] H. Shashaani, M. Faramarzpour, M. Hassanpour, N. Namdar, A. Alikhani, and M. Abdolahad, "Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells," Biosens Bioelectron, vol. 85, pp. 363-70, Nov 15 2016.
[42] K. S. M. G.A. Melikjanyan, "POSSIBILITY OF APPLICATION OF POROUS SILICON
AS GLUCOSE BIOSENSOR," Armenian Journal of Physics, 2011.
[43] C. A. Betty, R. Lal, D. K. Sharma, J. V. Yakhmi, and J. P. Mittal, "Macroporous silicon based capacitive affinity sensor—fabrication and electrochemical studies," Sensors and Actuators B: Chemical, vol. 97, pp. 334-343, 2004.
[44] Z. Song, H. Chang, W. Zhu, C. Xu, and X. Feng, "Rhodium nanoparticle-mesoporous silicon nanowire nanohybrids for hydrogen peroxide detection with high selectivity," Sci Rep, vol. 5, p. 7792, Jan 15 2015.
[45] C.-W. H. Wen-Chao Feng, Hsi-Chien Liu, Gou-Jen Wang, "A Cost Effective and Highly Sensitive Glucose Biosensor Based On A 3D Silicon Nanowire Array Electrode," 2014.
[46] D. H. Kwon, H. H. An, H.-S. Kim, J. H. Lee, S. H. Suh, Y. H. Kim, et al., "Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles," Applied Surface Science, vol. 257, pp. 4650-4654, 2011.
[47] J. M. Pingarron, P. Yanez-Sedeno, and A. Gonzalez-Cortes, "Gold nanoparticle-based electrochemical biosensors," Electrochimica Acta, vol. 53, pp. 5848-5866, 2008.
[48] F. Kurniawan, V. Tsakova, and V. M. Mirsky, "Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars," Electroanalysis, vol. 18, pp. 1937-1942, 2006.
[49] M. C. Cooray, Y. Liu, S. J. Langford, A. M. Bond, and J. Zhang, "One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose," Anal Chim Acta, vol. 856, pp. 27-34, Jan 26 2015.
[50] T. D. Thanh, J. Balamurugan, J. Y. Hwang, N. H. Kim, and J. H. Lee, "In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing," Carbon, vol. 98, pp. 90-98, 2016.
[51] Y. Lv, F. Wang, H. Zhu, X. Zou, C.-a. Tao, and J. Wang, "Electrochemically Reduced Graphene Oxide-nafion/Au Nanoparticle Modified Electrode for Hydrogen Peroxide Sensing," Nanomaterials and Nanotechnology, p. 1, 2016.
[52] G. Sanchez-Obrero, M. Cano, J. L. Avila, M. Mayen, M. L. Mena, J. M. Pingarron, et al., "A gold nanoparticle-modified PVC/TTF-TCNQ composite amperometric biosensor for glucose determination," Journal of Electroanalytical Chemistry, vol. 634, pp. 59-63, 2009.
[53] V. Mazeiko, A. Kausaite-Minkstimiene, A. Ramanaviciene, Z. Balevicius, and A. Ramanavicius, "Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design," Sensors and Actuators B: Chemical, vol. 189, pp. 187-193, 2013.
[54] K. Tian, S. Alex, G. Siegel, and A. Tiwari, "Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode," Mater Sci Eng C Mater Biol Appl, vol. 46, pp. 548-52, Jan 2015.
[55] N. German, A. Kausaite-Minkstimiene, A. Ramanavicius, T. Semashko, R. Mikhailova, and A. Ramanaviciene, "The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole," Electrochimica Acta, vol. 169, pp. 326-333, 2015.
[56] Carlos A. Gal6n-Vidal, Javier Muhoz, Carlos Dominguez, and S. Alegret, "Chemical sensors, biosensors and thick-film technology," 1995.
[57] T. Matsumoto, A. Ohashi, and N. Ito, "Development of a micro-planar Ag/AgCl quasi-reference electrode with long-term stability for an amperometric glucose sensor," 2002.
[58] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[59] T. C. Nguyen, X. T. Vu, M. Freyler, and S. Ingebrandt, "PSPICE model for silicon nanowire field-effect transistor biosensors in impedimetric measurement mode," physica status solidi (a), vol. 210, pp. 870-876, 2013.
[60] M. Y. Shen, B. R. Li, and Y. K. Li, "Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive," Biosens Bioelectron, vol. 60, pp. 101-11, Oct 15 2014.
[61] J. N. Solange M. Cottica, ? Helena S. Nakatani, Claudio C. Oliveira, and J. V. V. Nilson E. de Souza, "Voltammetric Determination of Pyridoxine (Vitamin B6) in Drugs using a Glassy Carbon Electrode Modified with Chromium(III) Hexacyanoferrate(II)," 2009.
[62] M. Pasta, F. La Mantia, and Y. Cui, "Mechanism of glucose electrochemical oxidation on gold surface," Electrochimica Acta, vol. 55, pp. 5561-5568, 2010.
[63] B. Wang, S. Yan, and Y. Shi, "Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing," Journal of Solid State Electrochemistry, vol. 19, pp. 307-314, 2014.
[64] S. H. Liao, S. Y. Lu, S. J. Bao, Y. N. Yu, and M. Q. Wang, "NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation," Anal Chim Acta, vol. 905, pp. 72-8, Jan 28 2016.
[65] Parviz Norouzi1, Farnoush Faridbod2, Bagher Larijani2, Mohammad Reza Ganjali1,2,*, "Glucose Biosensor Based on MWCNTs-Gold Nanoparticles in a
Nafion Film on the Glassy Carbon Electrode Using Flow
Injection FFT Continuous Cyclic Voltammetry," 2010.
[66] S. Sabury, S. H. Kazemi, and F. Sharif, "Graphene-gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor," Mater Sci Eng C Mater Biol Appl, vol. 49, pp. 297-304, Apr 2015.
[67] M. Jia, T. Wang, F. Liang, and J. Hu, "A Novel Process for the Fabrication of a Silver?Nanoparticle?Modified Electrode and Its Application in Nonenzymatic Glucose Sensing," Electroanalysis, vol. 24, pp. 1864-1868, 2012.
[68] Y. Liu, S. Liu, R. Chen, W. Zhan, H. Ni, and F. Liang, "An Antibacterial Nonenzymatic Glucose Sensor Composed of Carbon Nanotubes Decorated with Silver Nanoparticles," Electroanalysis, vol. 27, pp. 1138-1143, 2015.
[69] N. Ohnishi, W. Satoh, K. Morimoto, J. Fukuda, and H. Suzuki, "Automatic electrochemical sequential processing in a microsystem for urea detection," Sensors and Actuators B: Chemical, vol. 144, pp. 146-152, 2010.
[70] Z. Olcer, E. Esen, T. Muhammad, A. Ersoy, S. Budak, and Y. Uludag, "Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling," Biosens Bioelectron, vol. 62, pp. 163-9, Dec 15 2014.
[71] Q. Chen, G. Li, Y. Nie, S. Yao, and J. Zhao, "Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration," Microfluidics and Nanofluidics, vol. 16, pp. 83-90, 2013.

指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明