博碩士論文 103553019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.14.135.52
姓名 魏國鈞(Kuo-Chun Wei)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 基於改良式HOG之物件追蹤演算法
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 以熵為特徵之視覺化交通監視系統★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
物件追蹤在近年來是一個相當熱門話題,特別在電腦視頻領域上,以物件追蹤為基礎用在自動監控系統上更是活躍,其中HOG演算法是目前公認最有效的演算法。
實際應用上HOG佔據太多運算,又以Gamma correction最為耗時。本研究本論文設計MHOG(Modified Histogram of Oriented Gradient),提出用Sobel Edge演算法的概念來延伸來進行取代,修改HOG耗費資源部分,提出一個試用及時系統演算法,稱之為基於改良式HOG之物件追蹤演算法MHOG(Modified Histogram of Oriented Gradient)和HOG相比的優點包括:

1.更能減少運算資源。
2.提升追蹤穩定度
在實驗結果上,展示出原始HOG與本研究所改良之差異性。依序是六個測試影像水鳥、汽車(靜止)、計算機、汽車(移動中)、黑猩猩
?
摘要(英) Abstract
Object tracking has recently been a widely researched topic, specifically in studies investigating computer-automated surveillance systems in the field of computer vision. Among currently available algorithms , the histogram of oriented gradients (HOG) has been recognized as the most effective design.
However, in practice, applying the HOG requires excessive computational resources, particularly for the gamma correction method, which is the most time-consuming method. Therefore, by expanding the concept of Sobel edge detection, the present study proposed a feasible real-time computing system named the modified histogram of oriented gradients (MHOG) to minimize the resource requirements of the conventional HOG. Comparing the MHOG and HOG revealed that the proposed algorithm has lower computational resource requirements and enhances the stability of tracking.
In this thesis, the differences between the conventional HOG and MHOD are demonstrated in six experimental images, namely images of a water bird, a stationary automobile, a calculator, a moving automobile, and a chimpanzee.
關鍵字(中) ★ 物件追蹤 關鍵字(英) ★ HOG
論文目次 摘要………………………………………………………………………iii
Abstract………………………………………………………………iv
致謝 ……………………………………………………………………v
目錄……………………………………………………………………vi
附圖索引……………………………………………………………………viii
第一章 緒論………………………………………………………………1
1.1簡介……………………………………………………………1
1.2研究動機………………………………………………………2
1.3本論文架構……………………………………………………3
第二章過去相關研究…………………………………………3
第三章 特徵擷取技術 ………………………………………3
第四章系統架構與改良式HOG演算法………………………3
第五章 實驗結果 ……………………………………………3
第六章 結論 …………………………………………………3
第二章 過去相關研究……………………………………………………4
2.1 物件追蹤……………………………………………………4
2.2 人臉偵測……………………………………………………7

第三章 特徵擷取技術………………………………………………………9
3.1 Pure pixel…………………………………………………… 9
3.2 Sobel Edge……………………………………………………11
3.3 Haar-like…………………………………………………… 12
3.4 LBP(Local binary pattern)…………………………………13
3.5 SIFT/SURT ………………………………………………… 15
3.6 HOG(Histogram of Oriented Gradient)…………………… 20
第四章 系統架構與改良式HOG演算法…………………………………26
4.1 OpenCV介紹…………………………………………………26
4.2 模擬系統架構 ……………………………………………… 28
4.3 新提出的方法(MHOG)………………………………………30
第五章 實驗結果………………………………………………………… 36
5.1 測試影像與實驗參數說明………………………………… 36
5.2 視覺分析…………………………………………………… 36
5.3 量化分析…………………………………………………… 43
第六章 結論……………………………………………………………… 45
參考文獻…………………………………………………………… 48
參考文獻 參考文獻
[1]A.M.Elgammal,D.Harwood,and L.S.Davis,”non-parametic model for background subtraction,”in proc. Of the 6th Europan conference on computer Vision,pp.751-767,2000.
[2]B. Horn and B. schunck, “Determining optical flow,”Artificial Intelligence,vol.17,pp.185-203,1981.
[3]D.Comaniciu,and P.Meer, “Mean Shift:A Robust Approach toward Fearure Space Analysis,”IEEE trans.On Pattern Analysis and Machine Intelligence,vol.24,no.5,pp.603-619,May 2002.
[4]K.Nummiaro,E.koller-Meier,and LV Gool,”An Adaptive Color-Based Particle Filter,”Image and Vision Computing,vol.21,pp.990110,2003[
[5] M.Breitenstein, F.Reichlin, B.Leibe, E.Koller-Meier, L.V.Gool,”Robust tracking-by-detection using a detector confidence particle filter,”In Proc.OfICCV,2009.
[6]B.Babenko,M.-H. Yang,S.Belongie,”Visual Tisual Tracking with Online Multiple Instance Learning”,In Proc.Of CVPR,2009
[7]H.Grabner and H.Bischof.”On-line boosting and vision.”In Proc.CVPR,volume 1,pp.260-267,2006.
[8]T.G.Dietterich,R.H.Lathrop,and L.T.perez.Solving the multiple instance problem with axis parallel rectangles.artificial Intelligence,pp.31-71,1997.
[9] G.Yang, and T.S.Huang,”Human facedetection in complex background,”Pattern Recognition,27(1),53-63,1994.
[10] Hsu,R.L.,A.M.Mohamed and A.K.Jain,”Face detection in color omage,”IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5),pp.696-704,2002.
[11] Jain ,K.,Y.Zhong and M.P.Jolly,”Deformable template models:A review,”Signal Processing.71(2),pp.109-129,1998.
[12] K.K.Sung, and T.Poggio,”Example-based Learning for view-based human face detection,”IEEE Transactions on Pattern Analysis and Machine Intelligence,20(1),pp.39-51,1998.
[13]R.Gonzalez and R.woods,”Digital Image Proccessing,”Addison Wesley,1992,pp.414-428.
[14]R.Boyle and R.Thomas,”Computer Vision: A First Course,”Blockwell Scientific Publications,1988,pp.48-50.
[15]Viola and Jones,”Rapid object detection using a boosted cascade of simplefeatures”,Computer Vision and Pattern Recognition,2001
[16] R.Lienhart, and J.Maydt, ,”An extended set of Haar-like features for rapid object detection”,In Proc.OFICIP,pp.I:900-903,2002
[17] C.H.Messom, and A.L.C.Barczak,”Fast and Efficient Rotated Haar-like Features Using Rotated Integral Images”,In Proc.Of Australian Conference on Robotics and Automation,pp.1-6,2006
[18]S.Brahnam,L.C.Jain,L.Nanni,and A.Lumini,Eds.,Local Binary Patterns:New Variants and Applications.London,U.K.:Springer,2014.
[19]T.Ojala,M.Pietikainen,and T.Maenpaa,”Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.24,no.7,pp.971-987,jul.2002.
[20] L Liu, S Lao, Fieguth P, S S Guo, X Wang and M Pietikainen,”Median robust extended local binary pattern for texture classification,”IEEE Transactions on Image Processing,25(3):pp.1368-1381,2016.
[21] G.David, Lowe,”Object recongnition from local scale-invariant features”.Proceedings of the international Conference on Computer Vision.pp,1150-1157,1999.


[22]Lowe, G.David,”Distinctive Image Feature from Scale-Invariant Keypoints”.International Journal of Computer Vision.60(2):pp.91-110,2004.
[23]Herbert Bay,Andress Ess,Tinne Tuytelaars,Luc Vn Gool,”SURF:Speeded Up
Robust Features”,Computer Vision and Image Understanding,Vol.110,No.3.pp.346-359,2008.
[24] H Bay, A Ess and T Tuytelaars,”Speeded-up robust features(SURF),”Computer vision and image understanding,”110(3):pp.346-359,2008
[25] P M Panchal, S R Panchal and S K. Shah,”A comparison of SIFT and SURF,”International Journal of Innovative Research in Computer and Communiction Engineering,1(2320):pp.97-98,2013.
[26]X.Wang,X.Han,and S.Yan.”A HOG-LBP human detector with partial occlusion handling,”In Proc.of ICCV,2009.
[27] N Dalal and B TRiggs.,”Histograms of oriented gradients for human detection,”In proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1:pp.886-893,2005.
[28] Q Zhu, M C Yeh and K T Cheng,”Fast human detection using a cascade of histograms of oriented gradients,”In Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.1491-1498,2006.
[29]Y.pang,Y.Yuan and X,Li,”Efficient HOG human detrction,”Signal Prcessing,91:pp.773-781,2011.
指導教授 張寶基、范國清 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明