博碩士論文 103521046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.144.123.153
姓名 蘇冠華(Kuan-Hua Su)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 經電漿處理之氧化鉿/氧化鋁/銻化鎵金氧半電容界面缺陷研究
(Investigation on the Interfacial Traps of Plasma-Treated HfO2/Al2O3/GaSb MOS Capacitors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 互補式金氧半(CMOS)積體電路技術依摩爾定律發展至今已近極限,尋求具高載子遷移率之新穎材料以取代目前的矽已是大勢所趨。在眾多選項中,三五族化合物半導體是目前最受矚目的標的之一。銻化鎵材料具備窄能隙及高電洞遷移率的特性,使元件能於低電壓下提供高的導通電流,適合製作低功耗高效能互補式電晶體,惟其與高介電材料氧化層之界面存在許多缺陷,這些界面缺陷會造成嚴重的載子散射,降低導通電流,閘極的調控能力亦受影響。因此,如何改善界面缺陷是目前銻化鎵金氧半場效電晶體製作上首要的課題。
本論文研究使用氫氣與氮氣電漿進行銻化鎵表面處理,在其上製作氧化鉿(3 nm)/氧化鋁(2 nm)/銻化鎵之金氧半電容,藉電容-電壓特性曲線探討經氣體電漿表面處理後之界面缺陷密度變化及成因。從實驗結果得知,氫氣電漿與表面產生的化學反應可有效去除原生氧化層,避免氧化銻所產生的漏電途徑,但仍有氧化鎵殘留的現象;於室溫下的電容調變率為30 %,價電帶附近之缺陷電荷密度以電導法計算可降低至4.74×1012 eV-1cm-2;氮氣電漿則會於氧化層/半導體界面形成氮化鎵層,使閘極氧化層之絕緣性提升。
為了得到更低的界面缺陷密度,本論文提出接續式氫氣電漿與氮氣電漿進行表面處理,亦即先以氫氣電漿去除原生氧化銻,再利用氮氣電漿於銻化鎵表面形成氮化層披覆之方法,使電容調變率可以高達53 %,且於價電帶附近與能隙中間區之缺陷密度經電導法計算後改善至2×1012 eV-1cm-2,而以Terman method計算後之界面缺陷密度為7.5×1013 eV-1cm-2。本論文研究結果顯示,經氫氣電漿處理後接續氮氣電漿表面處理,能更有效地降低界面缺陷密度和解決費米能階釘札效應,此全球首創之表面處理技術將對未來銻化鎵金氧半場效電晶體的實用化有相當大的助益。
摘要(英) The development of current complementary metal-oxide-semiconductor (CMOS) integrated circuits, which follows Moore’s Law for decades, has approaching its fundamental limit. Pursuing a high mobility channel material to replace current Si-based material is inevitable and urgent. Among the candidates available, III-V compound semiconductors are the one that attracts many attentions from worldwide researchers. GaSb is a promising material for future p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) because of its narrow bandgap and high hole mobility that give rise to high drive current at low operating voltage. However, the presence of native oxide and interface traps at high-k/GaSb interface makes it difficult to modulate the channel by gate voltage. Improving GaSb MOS interface is thus the top priority.
In this study, hydrogen plasma and nitrogen plasma surface treatment on GaSb were employed during the fabrication of HfO2(3nm)/Al2O3(2nm)/GaSb metal-oxide semiconductor capacitors (MOSCAPs). The MOSCAPs prepared by hydrogen plasma process only show capacitance modulation of 30 % with an interface trap density (Dit) 4.74×1012 eV-1cm-2 extracted by conductance method. The devices that were subject to nitrogen plasma treatment only have a nitridation interface layer, which improves gate leakage. For further improvement, hydrogen plasma treatment and nitrogen plasma treatment were sequentially used to fabricate GaSb MOCAPs. As a result, the capacitance modulation improves to 53% and the Dit near the valence band is reduced to 2×1012 eV-1cm-2 and 7×1013 eV-1cm-2 extracted by conductance method and Terman method, respectively. The result of this study is encouraging for the realization of high performance GaSb MOSFETs.
關鍵字(中) ★ 銻化鎵
★ 金氧半電容
★ 電漿表面處理
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 9
第二章 實驗設備與分析方法 10
2.1 前言 10
2.2 實驗設備 11
2.2.1 原子層沉積系統 11
2.2.2 X-射線光電子能譜系統 13
2.3 介電層/半導體界面分析方法與原理 14
2.3.1 氧化層/半導體界面缺陷種類介紹 19
2.3.2 界面缺陷密度計算及分佈 22
第三章 高溫電漿表面處理後對氧化層/銻化鎵金氧半電容之研究 29
3.1 簡介 29
3.2 試片製備 30
3.3 電漿氣體種類對氧化鉿/氧化鋁/銻化鎵金氧半電容特性之研究 31
3.4 界面缺陷密度計算與能帶分佈 36
3.5 氧化層/半導體界面化合物探討 42
3.6 小結 45
第四章 室溫氫氣及氮氣電漿表面處理對氧化鉿/氧化鋁/銻化鎵金氧半結構特性之研究 47
4.1 前言 47
4.2 試片製備 48
4.3 氫氣/氮氣電漿表面處理對金氧半結構電容-電壓之影響 50
4.3.1氫氣電漿與氮氣電漿處理對金氧半電容特性之影響 50
4.3.2氮氣電漿處理時間對金氧半電容特性影響之探討 54
4.4 界面缺陷密度計算及能帶分佈 58
4.5 氧化層/半導體界面化合物探討 68
4.6 小結 71
第五章 結論 73
參考文獻 75
參考文獻 [1] J. A. del Alamo, "Nanometre-scale electronics with III-V compound semiconductors," Nature, vol. 479, pp. 317-323, 2011.
[2] J. Robertson and B. Falabretti, "Band offsets of high K gate oxides on III-V semiconductors," Journal of Applied Physics, vol. 100, p. 014111, 2006.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
[4] A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, et al., "Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3," Applied Physics Letters, vol. 97, p. 143502, 2010.
[5] A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, et al., "Optimization of the Al2O3/GaSb Interface and a High-Mobility GaSb pMOSFET," IEEE Transactions on Electron Devices, vol. 58, pp. 3407-3415, 2011.
[6] L. F. Zhao, Z. Tan, J. Wang, and J. Xu, "Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)(2)S solution," Chinese Physics B, vol. 23, p. 078102, 2014.
[7] L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, S. M. Prokes, J. B. Boos, D. Park, et al., "Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure," Applied Physics Letters, vol. 101, p. 231601, 2012.
[8] L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, B. R. Bennett, and S. M. Prokes, "Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure," AIP Advances, vol. 4, p. 127153, 2014.
[9] R. L. Chu, T. H. Chiang, W. J. Hsueh, K. H. Chen, K. Y. Lin, G. J. Brown, et al., "Passivation of GaSb using molecular beam epitaxy Y2O3 to achieve low interfacial trap density and high-performance self-aligned inversion-channel p-metal-oxide-semiconductor field-effect-transistors," Applied Physics Letters, vol. 105, p. 182106, 2014.
[10] M. Barth, G. B. Rayner, S. McDonnell, R. M. Wallace, B. R. Bennett, R. Engel-Herbert, et al., "High quality HfO2/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness," Applied Physics Letters, vol. 105, p. 222103, 2014.
[11] M. Yokoyama, H. Yokoyama, M. Takenaka, and S. Takagi, "Impact of interfacial InAs layers on Al2O3/GaSb metal-oxide-semiconductor interface properties," Applied Physics Letters, vol. 106, p. 122902, 2015.
[12] S. C. Liu, B. Y. Chen, Y. C. Lin, T. E. Hsieh, H. C. Wang, and E. Y. Chang, "GaN MIS-HEMTs With Nitrogen Passivation for Power Device Applications," IEEE Electron Device Letters, vol. 35, pp. 1001-1003, 2014.
[13] E. H. Nicollian and A. Goetzberger: “, "The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique," Bell Syst. Tech. J, vol. 46, pp. 1055-1133, 1967.
[14] 許哲瑋, "氧化鉿/砷化銦金氧半結構之製備及其界面與電性研究," 國立中央大學碩士論文, pp. 1-65, 2012.
[15] R. Engel-Herbert, Y. Hwang, and S. Stemmer, "Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces," Journal of Applied Physics, vol. 108, p. 124101, 2010.
[16] L. M. Terman, "An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes," Solid-State Electronics, vol. 5, pp. 285-299, 1962.
[17] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, "GaN MIS-HEMTs with nitrogen passivation for power device applications," IEEE Electron Device Letters, vol. 35, pp. 1001-1003, 2014.
[18] V. Chobpattana, J. Son, J. J. M. Law, R. Engel-Herbert, C. Y. Huang, and S. Stemmer, "Nitrogen-passivated dielectric/InGaAs interfaces with sub-nm equivalent oxide thickness and low interface trap densities," Applied Physics Letters, vol. 102, p. 022907, 2013.
[19] E. R. Cleveland, L. B. Ruppalt, B. R. Bennett, and S. M. Prokes, "Effect of an in situ hydrogen plasma pre-treatment on the reduction of GaSb native oxides prior to atomic layer deposition," Applied Surface Science, vol. 277, pp. 167-175, 2013.
[20] 徐賢名, "氧化鉿/氧化鋁/銻化鎵金氧半結構製備與界面缺陷之研究," 中央大學電機工程學系學位論文, pp. 1-83, 2014.
[21] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, pp. 5815-5875, 2001.
[22] A. J. Grede and S. L. Rommel, "Components of channel capacitance in metal-insulator-semiconductor capacitors," Journal of Applied Physics, vol. 114, p. 114510, 2013.
[23] Alex Grede (2014), "Simulation and Admittance Analysis for Advanced Metal-Insulator-Semiconductor Characterization," https://nanohub.org/resources/samis.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2017-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明