博碩士論文 100281004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.226.172.61
姓名 邵培強(Pei-Chiang Shao)  查詢紙本館藏   畢業系所 數學系
論文名稱 神經元網路訊息的因果分析
(Causal Connectivity Analysis for Identifying the Information Flow of Neuronal Networks)
相關論文
★ 台灣與韓國之十二年數學課程比較★ 台灣與英國三角函數課程之教科書比較
★ 以自迴歸模型分析神經元訊號間之因果關係★ 自由邊界的保角參數化在Matlab上實現
★ 利用數值模擬探討各式干擾因子對兩電生理訊號因果關係判讀之影響★ 一個物件導向的數學概念學習與診斷工具
★ 增加解析度的凌波演算法★ 提昇後的凌波函數與數值分析
★ Helmholtz 方程與 Wavelet 迭代法★ 影像放大與直脊函數
★ 雙正交凌波函數於血壓與 交感神經活性訊號分析之應用★ 中小學數學創意教學競賽實施之研究
★ 血壓與交感神經活性訊號關係的數學模型★ 國中生胚騰推理與數學能力之相關性研究
★ 台灣與日本之十二年數學課程比較★ 台灣與新加坡之十二年數學課程比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要發展用來判別神經元網路資訊流向的統計分析方法。格蘭傑因果關係 (Granger causality, GC) 是個用來估計時間序列訊號間因果交互作用相當流行且有效的概念。在過去的二十年來,GC 已成為一個可用來偵測多種不同類型神經活動資料間因果關聯的強大分析方法。然而,在實際運用GC到神經科學領域時,有三個主要問題尚須進一步的研究與釐清:第一,原始的GC測度被設計成非負實數的形式,因此缺乏用來區分神經元間興奮性與抑制性因果關聯的有效特徵。第二,雖然GC已大量被使用,但估算出的因果強度與實際神經元之間突觸權重的關聯仍不清楚。第三,GC 無法直接用來解析大尺度的神經元資料,因為其中的變數數量經常遠遠超過所紀錄到的時間序列樣本數。對於上述前兩個問題,我們利用原始GC的架構並根據一個最佳線性預測子(best linear predictor, BLP)的假設,提出了能夠有效解析神經元網路間突觸權重的計算方法。在BLP的假設下,GC 可被擴展以同時測量神經元間興奮性與抑制性作用。我們設計了三種不同類型的模擬神經元網路來測試所提的新方法,包含從簡單的線性與近線性網路結構至複雜的非線性網路結構。這些模擬例子驗證了BLP假設的正當性以及計算方法的正確性。此方法也被示範性的用來分析大腦前扣帶皮層(ACC)與紋狀體(STR)真實的神經元活動資料。分析結果顯示,在注射 D2 多巴胺受體刺激劑的狀態下,ACC 當中以及由 ACC 投射至 STR 存在顯著的興奮性作用,而 STR 當中存在顯著的抑制作用。

實務上,從腦中擷取大尺度紀錄之神經訊號間的因果交互作用對於腦部特定功能之完整解析與可靠推論來說相當重要。然而,在大尺度訊號中,神經元的數量往往嚴重大過紀錄到的訊號長度;此過大的變數與樣本比值對於大多數現存的統計分析方法來說都會造成相當大的阻礙,甚至使分析方法在數學計算上完全失效。本文接著介紹一個三階段的變數選擇方法,它能夠有效地將一個大尺度變數集合調降成一個只包含有相關性變數的較小變數集,進而讓GC能夠應用到此調降的變數集合上。此方法使用(1)正交向前選擇解釋變量,(2)一停止準則以終止前向納入變量,和(3)進一步向後修剪消除不相關變量。對於上段提到的第三個問題,我們以此三階段方法為核心提出一個變量選擇演算法使得GC能夠被用來解析大尺度的時間序列資料。我們設計了一個以電位閾值激發的大尺度神經元網路模型來試驗所提方法的一致性。此方法應用在大鼠的行為資料分析中也得到全新的發現。這些框架提供了真實神經元網路分析的新方向。
摘要(英) This thesis is devoted to developing statistical methods for identifying the information flow of neuronal networks. Granger causality (GC) is a very popular and also useful
concept for estimating causal interactions between time-series signals. Over the past two decades, GC has emerged as a powerful analytical method for detecting the causal relationship among various types of neural activity data. However, three problems encountered when GC was used in the field of neuroscience remain not very clear and
further researches are needed. Firstly, the GC measure is designed to be nonnegative in its original form, lacking of the trait for differentiating the effects of excitations
and inhibitions between neurons. Secondly, how is the estimated causality related to the underlying neuronal synaptic weights? Thirdly, GC can not be applied to large-scale neuronal data, in which the number of variables is far greater than the length of time series. For the first two problems, we propose, under a best linear predictor (BLP) assumption, a computational algorithm for analyzing neuronal networks by estimating the synaptic weights among them. Under the BLP assumption, the GC analysis can be extended to measure both excitatory and inhibitory effects between neurons. The method was examined by three sorts of simulated networks: those with linear, almost linear, and
nonlinear network structures. The method was also illustrated to analyze real spike train data from the anterior cingulate cortex (ACC) and the striatum (STR). The results showed, under the quinpirole administration, the significant existence of excitatory effects inside the ACC, excitatory effects from the ACC to the STR, and inhibitory
effects inside the STR.

Extracting causal interactions from a large-scale recording of neural ensemble in the brain is very important to a comprehensive understanding or a reliable inference of
certain brain functions. However, the oversized ratio between neuron number and signal length causes great difficulty to most of existing statistical methods. This thesis also introduces a three-stage variable selection approach that can be used to effectively reduce the large-scale variable set to a small but relevant one and enables GC to be applied to the reduced set. The method uses (1) an orthogonal greedy algorithm to include variables in a forward manner (2) a stopping criterion to terminate the forward inclusion of variables, and (3) a backward elimination to further trim irrelevant variables. For the third problem, we propose a computational algorithm
which wraps the above selection approach as its core, enabling GC to work on large-scale time-series data. The method was examined by a large-scale simulated threshold spiking neuron model, and real data were used to demonstrate that our method is also useful in monitoring neural connectivity for general network. These frameworks give an insight into the analysis of real neuronal networks.
關鍵字(中) ★ 格蘭傑因果關係
★ 格蘭傑因果指標
★ 向量自迴歸模型
★ 神經元網路
★ 突觸權重估計
★ 神經突觸指標
★ 變數選擇
★ 大尺度神經元網路
★ 高維度資料分析
關鍵字(英) ★ Granger causality
★ Granger causality index
★ Vector autoregressive model
★ Neuronal networks
★ Synaptic weights estimation
★ Neuron Synaptic Index
★ Variable selection
★ Large-scale neuronal networks
★ High-dimensional data analysis
論文目次 Contents
1 Brief Introduction to Neurons 1
1.1 The neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Action potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Synaptic transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Effects of Spike Sorting Error 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Modeling and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 A short introduction to the GCI . . . . . . . . . . . . . . . . . . . 6
2.2.2 An explicit formula . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Essential GCI factors . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 GCI vs. variance reduction . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Supplementary simulations of FPs . . . . . . . . . . . . . . . . . . 15
2.3.5 Simulation for threshold detection . . . . . . . . . . . . . . . . . . 17
2.4 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Synaptic Weights Estimation 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Modeling and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 An introduction to the GC . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Synaptic weights estimation . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Linear network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Almost-linear network . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Nonlinear network . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Implications of the pooled data . . . . . . . . . . . . . . . . . . . 40
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Large-Scale Sparse Neuronal Networks 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Forward stepwise regression via the OGA iteration . . . . . . . . 47
4.2.2 Stopping rule and consistent model selection . . . . . . . . . . . . 48
4.2.3 Further trimming to exclude irrelevant variables . . . . . . . . . . 49
4.2.4 The computational algorithm . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Granger causality index . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.6 Neuron synaptic index . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A Derivation of the Explicit Formula 67
B Derivation of the NSI using Simple Network 68
Bibliography 70
參考文獻 [1] Arnold, A., Liu, Y., and Abe, N. (2007). Temporal causal modeling with graphical Granger methods. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 7, 66--75.
[2] Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccala, L. A., de Vico, Fallani F., Salinari, S., Ursino, M., Zavaglia, M., Ding, L., Edgar, J. C., Miller, G. A., He, B., and Babiloni, F. (2007). Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Human Brain Mapping, 28, 143--157.
[3] Baccala, L. A. and Sameshima, K. (2001). Partial directed coherence : a new concept in neural stucture determination. Biological Cybernetics, 84, 463--474.
[4] Barnett, L. and Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of Neuroscience Methods,
223, 50--68.
[5] Barrett, A. B. and Barnett, L. (2013). Granger causality is designed to measure effect, not mechanism. Frontiers in Neuroinformatics, 7, 1--2.
[6] Benjamini, Y. and Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289--300.
[7] Bressler, S. L., Richter, C. G., Chen, Y., and Ding, M. (2007). Cortical functional network organization from autoregressive modeling of local filed potential oscillations. Statistic in Medicine, 26, 3875--3885.
[8] Bressler, S. L. and Seth, A. K. (2011). Wiener-Granger Causality: A well established methodology. NeuroImage, 58, 323--329.
[9] Brown, E. N., Kass, R. E., and Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7, 456--461.
[10] Brunel, N. (2000). Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons Journal of Computational Neuroscience, 8, 183--208.
[11] Bush, P. and Sejnowski, T. (1996). Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. Journal of Computational Neuroscience, 3, 91--110.
[12] Cadotte, A. J., DeMarse, T. B., He, P., and Ding, M. (2008). Causal measures of structure and plasticity in simulated and living neural networks. PLoS Computational Biology, 3, 1--14.
[13] Cadotte, A. J., DeMarse, T. B., Mareci, T. H., Parekh, M. B., Talathi, S. S., Hwang, D. U., Ditto, W. L., Ding, M., and Carney, P. R. (2010). Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. Journal of Neuroscience methods, 189, 121--129.
[14] Cao, Y., Maran, S. K., Dhamala, M., Jaeger, D., and Heck, D. H. (2012). Behavior-related pauses in simple-spike activity of mouse purkinje cells are linked to spike rate modulation. Journal of Neuroscience, 25, 8678--8685.
[15] Cheng, D., Bahadori, M., T., and Liu, Y. (2014). FBLG: A simple and effective approach for temporal dependence discovery from time series data. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 14, 382--391.
[16] Churchland, P. S. and Sejnowski, T. J. (1992). The computational brain. The MIT press.
[17] Dhamala, M., Rangarajan, G., and Ding, M. (2008). Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage, 41, 354--362.
[18] Deborah, S., Won, D. Y., and Patrick, D. W. (2003). Effects of spike sorting error on information content in multi-neuron recordings. Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, 3, 618--621.
[19] Ding, M., Chen, Y., and Bressler, S. L. (2006). Granger Causality: Basic Theory and Application to Neuroscience.
Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. 437--460.
[20] Fallani, F. De Vico, Corazzol, M., Sternberg, J., Wyart, C., and Chavez, M. (2015). Hierarchy of Neural Organization in the Embryonic Spinal Cord: Granger-Causality Graph Analysis of Calcium Imaging Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 333--341.
[21] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of American Statistical Association, 96, 1348--1360.
[22] Ge, T., Kendrick, K.M., and Feng, J. (2009). A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning.
PLoS Computational Biology, 5, 11.
[23] Gomez, L., Budelli, R., Saa, R., Stiber, M., and Segundo, J. P. (2005). Pooled spike trains of correlated presynaptic inputs as realizations of cluster point
processes. {it Biological Cybernetics}, 92, 110--127.
[24] Gow, D. W., Segawa, J. A., Ahlfors, S. P., Lin, and F. H. (2008). Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates.
Neuroimage, 43, 614--623.
[25] Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424--438.
[26] Granger, C. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2, 329--352.
[27] Greene, W. H. (2002). Econometric Analysis, fifth ed. Prentice-Hall, Upper Saddle River, NJ.
[28] Guo, S., Seth, A. K., Kendrick, K. M., Zhou, C., and Feng, J. (2008). Partial Granger causality -- Eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods, 172, 79--93.
[29] Guo, S., Ladroue, C., and Feng, J. (2010). Granger Causality: Theory and Applications. Frontiers in Computational and Systems Biology. Springer, London 83--111.
[30] Hu, S., Dai, G., Worrel, G. A., Dai, Q., and Liang, H. (2011). Causality analysis
of neural connectivity: critical examination of existing methods and advances of new methods. IEEE Transactions on Neural Networks, 22, 829--844.
[31] Huang, J. J., Yen, C. T., Liu, T. L., Tsao, H. W., Hsu, J. W., and Tsai, M. L. (2013). Effects of dopamine D2 agonist quinpirole on neuronal activity of anterior cingulate cortex and striatum in rats. Psychopharmacology, 227, 459--466.
[32] Ing, C. K. and Lai, T. L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statistica Sinica, 21, 1473--1513.
[33] Izhikevich, E. M. (2003). Simple models of spiking neurons. IEEE Transactions on Neural Networks}, 14, 1569--1572.
[34] Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating causal relations in neural systems : Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85, 145--157.
[35] Kim, S., Putrino, D., Ghosh, S., and Brown, E. N. (2011). A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Computational Biology}, 7, 3.
[36] Kitagawa, G. (2010). Introduction to Time Series Modeling. Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
[37] Krueger, F., Landgraf, S., van der Meer, E., Deshpande, G., and Hu, X. (2011). Effective connectivity of the multiplication network: a functional MRI and multivariate Granger Causality Mapping study. Human Brain Mapping, 32, 1419--1431.
[38] Krumin, M. and Shoham, S. (2010). Multivariate autoregressive modeling and Granger causality analysis of multiple spike trains. Computational Intelligence and Neuroscience 752428.
[39] Lehky, S. R. (2010). Decoding poisson spike trains by gaussian filtering. Neural Computation, 22, 1245--1271.
[40] Lewicki, M. S. (1998). A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Computation in Neural Systems, 9, R53--R78.
[41] Luo, Q., Lu, W., Cheng, W., Valdes-Sosa, P. A., Wen, X., Ding, M., and Feng, J. (2013). Spatio-temporal Granger causality: A new framework. NeuroImage, 79, 241--263.
[42] Luo, Q., Ge, T., Grabenhorst, F., Feng, J., and Rolls, E. T. (2013). Attention-Dependent Modulation of Cortical Taste Circuits Revealed by Granger Causality with Signal-Dependent Noise. PLoS Computational Biology, 9, 10.
[43] Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer.
[44] Marinazzo, D., Liao, W., Chen, H., and Stramaglia, S. (2011). Nonlinear connectivity by Granger causality. NeuroImage, 58, 330-338.
[45] Michailidis, G. and d′Alche-Buc, F. (2013). Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues. Mathematical Biosciences, 246, 326--334.
[46] Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale
spiking neural networks on graphics processors.
Neural Networks, 22, 791--800.
[47] Nedungadi, A. G., Rangarajan, G., Jain, N., and Ding M. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27, 55--64.
[48] Ostojic, S. (2014). Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature Neuroscience, 17, 594--600.
[49] Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M, Chichilnisky, E. J., and Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995--999.
[50] Priestley, M.B. (1994). Spectral Analysis and Time Series. London: Academic Press.
[51] Quinn, C. J., Coleman, T. P., Kiyavash, N., and Hatsopoulos, N. G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30, 17--44.
[52] Rosenbaum, R., Trousdale, J., and Josic, K. (2011). The effects of pooling on spike train correlations. Frontiers in Neuroscience, 5, 1--10.
[53] Sameshima, K. and Baccala, L. A. (1999). Using partial directed coherence to describe neuronal ensemble interactions. Journal of Neuroscience Methods, 94, 93--103.
[54] Seth, A. K. (2005). Causal connectivity of evolved neural networks during behavior. Network, 16, 35--54.
[55] Seth, A. K. and Edelman, G. M. (2007). Distinguishing causal interactions in neural populations. Neural Computation, 19, 910--933.
[56] Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods, 186, 262--273.
[57] Shao, P. C., Tseng, W. T., Kuo, C. C., Shann, W. C., Tsai, M. L., and Yen, C. C. (2013). Effects of spike sorting error on the Granger causality index. Neural Networks, 46, 249--259.
[58] Shao, P. C., Huang, J. J., Shann, W. C., Yen, C. T., Tsai, M. L., and Yen, C. C. (2015). Granger causality-based synaptic weights estimation for analyzing neuronal networks.
Journal of Computational Neuroscience, 38, 483--497.
[59] Shimazaki, H. and Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation, 19, 1503--1527.
[60] Takeda, M. and Matsumoto S. (1997). Discharge patterns of dorsal and ventral respiratory group neurons during spontaneous augmented breaths observed in pentobarbital anesthetized rats. Brain Res., 749(1), 95--100.
[61] Tripp, B. P. and Orchard, J. (2012). Population coding in sparsely connected networks of noisy neurons. Frontiers in Computational Neuroscience, 6, 23.
[62] Tseng, W. T., Tsai, M. L., Iwata, K., and Yen, C. T. (2012). Long-Term Changes in Trigeminal Ganglionic and Thalamic Neuronal Activities following Inferior Alveolar Nerve Transection in Behaving Rats. Journal of Neuroscience, 32, 16051--16063.
[63] Wei, William W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods, second edition.
California: Addison-Wesley. 391--392.
[64] Wiener, N. (1956). The theory of prediction. In Modern Mathematics for Engineers, vol. 1. New York: McGraw-Hill.
[65] Zhang, L., Chen, G., Niu, R., Wei, W., Ma, X., Xu, J., Wang, J., Wang, Z., and Lin, L. (2012). Hippocampal theta-driving cells revealed by Granger Causality. Hippocampus, 8, 1781--1793.
[66] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning Research, 7, 2541--2563.
[67] Zhou, Z., Ding, M., Chen, Y., Wright, P., Lu, Z., and Liu, Y. (2009). Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality.
Brain Research, 1289, 22--29.
[68] Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., and Cai, D. (2014). Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.
PLoS ONE, 9, 2.
[69] Zhu, L., Lai, Y. C., Hoppensteadt, F. C., and He. J. (2003). Probing changes in neural interaction during adaptation. Neural Computation, 15, 2359--2377.
[70] Zou, C., Ladroue, C., Guo, S., and Feng, J. (2010). Identifying interactions in the time and frequency domains in local and global networks - A Granger causality approach.
BMC Bioinformatics, 11, 337.
指導教授 單維彰、嚴健彰(Wei-Chang Shann Chien-Chang Yen) 審核日期 2017-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明