博碩士論文 103323081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.145.38.166
姓名 黃俊瑋(Chun-Wei Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 聚醚醚酮之積層製造系統開發
(Development of Additive Manufacturing System for PEEK Material)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今積層製造技術更加純熟,而應用於生醫領域的實驗或是臨床試驗之案例是越來越多,其主要三大應用為:術前模擬用模型、手術器械製作以及植入物的生產。尤其在植入物方面,由於積層製造有快速客製化的優勢,具有相當大的發展潛力。而因應這方面的發展,使用的生物材料種類也漸趨廣泛。
本研究主旨為自行建構出一套使用融熔沉積技術的三維列印系統,並選擇新興的生物相容性材料-聚醚醚酮作為系統使用的主材料。其機械強度較一般塑膠材料高出許多,並具有生物相容性,因此能應用於人體植入物。本研究使用之系統分為硬體、軟體兩部分,硬體部分改裝自架構自由度高的ZMorph 2.0 S原型機,因聚醚醚酮的熔點較一般FDM常用線材高出約200°C,故大部分的部件都必須更換以符合要求。軟體部分藉由RepRap的網路平台技術交流的優點,能使用相對應的host軟體以及切層程式。而針對聚醚醚酮的使用必須對各項加工參數校正以利材料列印。本研究也針對聚醚醚酮的性質進行探討,進行了拉伸試驗,得到其機械強度數據,並研究不同的加工參數與強度的關聯。
最後本研究也成功的使用聚醚醚酮做出不同尺寸、外型複雜的模型,以驗證機台的製作能力。
摘要(英) Nowadays, additive manufacturing is more mature and there are more and more cases applied to medical fields for experiments or clinical applications. There are three main applications of AM in medicine: models for perioperative simulation, surgical instruments and implant manufacturing. Especially in the implant, due to the advantages of AM’s rapid customization, it has considerable potential. In response to this, the kinds of biological material are becoming more widespread.
The purpose of this study is establishing a 3D printing system which used fused deposition modeling and using rising biocompatible material - PEEK as the main material. Because PEEK is biocompatibility and its mechanical properties’ level is more higher than another general plastic materials. Therefore, PEEK can be applied to human implant. The system is divided into two parts: hardware and software. The ZMorph 2.0 S is using as prototype machine which has high degree of freedom in the hardware structure. Because the melting point of PEEK is about 200°C higher than the common FDM filament, most parts must be replaced for meeting the requirements. In software part, RepRap has technical exchanging network platform, user can find the corresponding host software and slicing program. It is necessary to correct the processing parameters for using PEEK in printing. In this study, the properties of PEEK were also discussed. The mechanical properties of PEEK were experimented by tensile test, and found the relationship between mechanical strength and different processing parameters.
Finally, PEEK was successfully used in making different size and complex geometry model to verify the manufacturing capability of the system.
關鍵字(中) ★ 積層製造
★ 融熔沉積成型
★ 聚醚醚酮
★ 拉伸試驗
關鍵字(英) ★ Additive Manufacturing
★ Fused deposition modeling
★ PEEK
★ Tensile test
論文目次 目錄
摘要.......................................................I
ABSTRACT................................................. II
致謝.................................................... III
目錄..................................................... IV
圖目錄.................................................... V
表目錄................................................... IX
符號說明...................................................X
第一章 緒論................................................1
1-1前言····················································1
1-2文獻回顧················································2
1-3研究動機與目的········································· 7 1-4論文架構·················································8
第二章 理論說明............................................ 9
2-1積層製造簡介············································ 9
2-2常見FDM熱塑性材料····································· 14
2-3聚醚醚酮的熱處理······································· 18
2-4聚醚醚酮的加工········································· 19
2-5材料性質檢測··········································· 23
第三章 研究方法............................................27
3-1系統架設··············································· 27
3-2拉伸試片製備··········································· 44
第四章 結果與討論......................................... 46
4-1系統溫度校正··········································· 46
4-2應力應變分析結果······································· 51
4-3 XRD繞射分析··········································· 62
4-4硬度試驗··············································· 63
4-5光學顯微鏡觀察········································· 64
4-6不同物件的製作結果····································· 66
第五章 結論與未來展望...................................... 72
5-1結論·················································· 72
5-2未來展望··············································· 72
參考來源.................................................. 73
參考文獻 [1] H. Anderl, D.Z. Nedden and W. Muhlbauer, “Ct-Guided Stereolithography as a new tool in Craniofacial Surgery”, British Journal Of Plastic Surgery, Vol.47, pp.60-64, 1994.
[2] E. Berry, J.M. Brown, M. Connell, C.M. Craven, N.D. Efford, A. Radjenovic and M.A. Smith, “Preliminary experience with medical applications of rapid prototyping by selective laser sintering”, Medical Engineering&Physics, Vol.19, pp.90-96, 1997.
[3] R. Petzold, H.-F. Zeilhoferb and W.A. Kalender, ”Rapid prototyping technology in medicine - basics and applications”, Computerized Medical Imaging and Graphics,Vol. 23,pp.277-284, 1999.
[4] Gu. P and Li. L, “Fabrication of Biomedical Prototypes with Locally Controlled Properties Using FDM”, Cirp Annals-Manufacturing Technology, Vol.51, pp.181-184, 2002.
[5] B. Leukers, H.G. Lkan, S.H. Irsen, S. Milz, C. Tille, M. Schieker and H. Seitz, “Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing”, Journal Of Materials Science-Materials In Medicine, Vol.16, pp.1121-1124, 2005.
[6] W. Zeng, J. Ruan and T. Zhou, “Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images”, Rapid Prototyping Journal, Vol.15, pp.280-284, 2008.
[7] D. Espalin, K. Arcaute, D. Rodriguez and F. Medina, “Fused deposition modeling of patient-specific polymethylmethacrylate implants”, Rapid Prototyping Journal, Vol.16, pp.164-173, 2010.
[8] K.B. Sagomonyants, M.L. J-Smith, J.N. Devine, M.S. Aronow and G.A. Gronowicz, “The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium”, Biomaterials, Vol.29, pp.1563-1572, 2008.
[9] B. Valentan, Z. Kadivnik, T. Brajlih, A. Anderson, Igor Drstvensek, “Processing Poly(Ether Etherketone) on a 3D Printer for Thermoplastic Modeling”, Materials and technology, Vol. 47, pp715-721, 2013.
[10] S.M. Kurtz and J.N. Devine, “PEEK biomaterials in trauma, orthopedic, and spinal implants”, Biomaterials, Vol.28, pp.4845-4869, 2008.
[11] 李鑫,邵茂官和張冰,「快速成型與製造技術發展現狀與趨勢」,北京化工大學技術文章,2008。
[12] C. L. Lim, 快速成型原理與應用,郭啟全和鄭正元譯,高立,2004。
[13] S. Ahn, M. Monterom, D. Odell, S. Roundy and P.K. Wright, “Anisotropic material
74
properties of fused deposition modeling ABS”, Rapid Prototyp Journal, Vol.8, pp.248-257, 2002.
[14] S. Upcraft and R. Fletcher, ” The rapid prototyping technologies”, Assembly Automation, Vol.23, pp.318-330, 2003.
[15] J. Lunt, ” Large-scale production, properties and commercial applications of polylactic acid polymers”, Polymer Degradation and Stability, Vol.59, pp.145-152, 1998.
[16] Y. Fana, H. Nishid, Y. Shirai, Y. Tokiwa and T. Endo, “Thermal degradation behaviour of poly(lactic acid) stereocomplex”, Polymer Degradation and Stability, Vol.86, pp.197-208, 2004.
[17] F. Carrasco, P. Pages, J. Gamez-Perez, O.O. Santana and M.L. Maspoch, ” Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties” Polymer Degradation and Stability, Vol.95, pp.116-125, 2010.
[18] F. Rodriguez, Principles of Polymer Systems, Taylor & Francis, London, 2003.
[19] R. May, Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 1988.
[20] R.B. Rigby, Engineering Thermoplastics:Properties and Applications, Marcel Dekker, New York, 1985.
[21] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang and J. Zhao, “Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS”, Materials, Vol.8, pp.5834-5846, 2015.
[22] A.R. McLauchlin, O.R. Ghita and L. Savage, “Studies on the reprocessability of poly(ether ether ketone) (PEEK)”, Journal of Materials Processing Technology, Vol.214, pp.75-80, 2014.
[23] M. Zalaznik, M.Kalin and S.Novak, “Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer”, Tribology International, Vol.94, pp92-97, 2016.
[24] P.E.E.K. Unfilled, Optima Processing Guide: Invibio Biomaterial Solutions. 2016年11月10日,取自http://www.invibio.com
[25] M.S. Abu Bakar, P. Cheang and K.A. Khor, “Mechanical properties of injection molded hydroxyapatite-polyetheretherketone Biocomposites”, Composites Science and Technology, Vol.63, pp421-425, 2003.
[26] X.Y. Wang, S.L. Ruan, B.N. Chang, B.Y. Lin and H.D Fang, “Material Modi-fication,
75
Processing and Application of PEEK”, Journal of Netshap Forming Eengineering, Vol.8, pp27-31, 2016.
[27] Z. El-Qoubaa and R. Othman, “Strain rate sensitivity of polyetheretherketone’s compressive yield stress at low and high temperatures”, Mechanics of Materials, Vol.95, pp15-27, 2016.
[28] PEEK BIOMATERIALS HANDBOOK, S.M. Kurtz, British Library, 2012.
[29] 劉偉均,材料實驗,國立編譯館,華泰書局,台北市,民國八十六年。
[30] 汪建民主編,材料分析,四版,民全書局,台北市,民國九十三年。
指導教授 廖昭仰 審核日期 2017-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明