參考文獻 |
〔1〕Hvorslev, M. J., Time lag and soil permeability in ground-water observations., U. S. Army Corps of Engineers, Waterways Experiment Station Bulletin No.36, Mississippi, USA, 1951.
〔2〕Cooper, H. H., Jr., Bredehodft, J. D. and Papadopulos, I. S., “Response of a finite-diameter well to an instantaneous charge of water”, Water Resource Research, 3(1), 263-269, 1967.
〔3〕Bouwer, H., and R. C. Rice, “A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells”, Water Resour. Res., 12(3), 423-428, 1976.
〔4〕Dagan, G., “A note on packer, slug, and recovery tests in unconfined aquifers”, Water Resour. Res., 14(5), 929-934, 1978.
〔5〕Widdowson, M. A., F. J. Molz, and J. G. Melville, “An analysis technique for multilevel and partially penetrating slug test data”, Ground Water, 28(6), 937-945, 1990.
〔6〕Melville, J. G., F. J. Molz, O. Guven, and M. A. Widdowson, “Multi- level slug tests with comparisons to tracer data”, Ground Water, 29(8), 897-907, 1991.
〔7〕Hinsby, K., P. L. Bjerg, L. J. Andersen, B. Skov, and E. V. Clausen, “A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer”, J. Hydrol., 136, 87-106, 1992.
〔8〕Butler, J. J. Jr., G. C. Bohling, Z. Hyder, and C. D. McElwee, “The use of slug test to describe vertical variations in hydraulic conductivity”, J. Hydrol., 156, 137-162, 1994.
〔9〕Ross, H. C. and C. D. McElwee, “Multi-level slug tests to measure 3-D hydraulic conductivity distributions”, Nat. Resour. Res., 16(1), 67-79, 2007.
〔10〕van der Kamp, G., “Determining aquifer transmissivity by memans of well response tests: The underdamped case”, Water Resour. Res., 12(1), 71-77, 1976.
〔11〕Kipp, K. L. Jr., “Tyoe curve analysis of inertial effects in the response of
a well to a slug test”, Water Resour. Res., 21(9), 1397-1408, 1985.
〔12〕Springer, R. K., and L. W. Gelhar, Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response., Cape Cod, Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 91-4034, 36-40, 1991.
〔13〕Zlotnik, V. A., and V. L. McGuire, “Multi-level slug tests in highly permeable formations: 1. Modification of the Springer-Gelhar (SG) model”, J. Hydrol., 204, 271-282, 1998.
〔14〕Zlotnik, V. A., and V. L. McGuire, “Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications”, J. Hydrol., 204, 283-296, 1998.
〔15〕Zurbuchen, B. R., V. A. Zlotnik, and J. J. Butler Jr., “Dynamic interpretation of slug test in highly permeable aquifers”, Water Resour. Res., 38(3), 1025, doi: 10.1029/2001WR000354, 2002.
〔16〕Butler, J. J. Jr., E. J. Garnett and J. M. Healey, “Analysis of slug tests in formations of high hydraulic conductivity”, Ground Water, 41(5), 620-630, 2003.
〔17〕Butler, J. J. Jr. and X. Zhan, 2004. “Hydraulic tests in highly permeable aquifers”, Water Resour. Res., 40, doi: 10.1029/2003 WR002998, 2004.
〔18〕Chen, C. S., and C. R. Wu, “Analysis of depth-dependent pressure head of slug tests in highly permeable aquifers”, Ground Water, 44(3), 472-477, 2006.
〔19〕Chen, C. S., “An analytic data analysis method for oscillatory slug tests”, Ground Water, 44(4), 604-608, 2006.
〔20〕Butler, J. J. Jr., The Design, Performance, and Analysis of Slug Tests., Boca Raton, Florida: Lewis Publishers, 1998.
〔21〕Chen, C. S., Y. C. Sie and Y. T. Lin, “A Review of the Multilevel Slug Test for Characterizing Aquifer Heterogeneity”, Terr. Atmos. Ocean. Sci., 23(2), 131-143, doi: 10.3319/TAO.2011.10.03.01(Hy), 2012.
〔22〕Hayashi, K., T. Ito, and H. Abe’ (1987), A new method for the determination of in situ hydraulic properties by pressure pulse tests and application to the Higashi Hachimantai geothermal field, J. Geophys. Res., 92(B9), 9168– 9174.
〔23〕Cassiani, G., and Z. J., Kabala, Hydraulics of a partially penetrating well: solution to a mixed-type boundary value problem via dual integral equations, J. Hydrol., 211, 100-111, 1998.
〔24〕Cassiani, G., Z. J. Kabala, and M. A. Medina Jr., Flowing partially penetrating well: solution to a mixed-type boundary value problem., Adv. Water Resour., 23, 59-68, 1999.
〔25〕Chang, C. C., and C. S. Chen, A flowing partially penetrating well in a finite-thickness aquifer: A mixed-type initial boundary value problem, J. Hydrol., 271, 101-118, 2003.
〔26〕T. Perina and T.C. Lee, General well function for pumping from a confined, leaky, or unconfined aquifer, J. Hydrol.,317,239-260,2006.
〔27〕王鼐,「利用積分轉換求解承壓含水層中多深度微水試驗的混合邊界值問題」,吉林大學,碩士論文,2013年。
〔28〕van Everdingen, A. F., “The skin effect and its influence on the productive capacity of a well”, Trans. AIME, 198, 171-176, 1953.
〔29〕Hurst, W., “Establishment of the skin effect and its impediment to fluid flow into a well bore”, Pet. Eng., 25(10), B-6, 1953.
〔30〕Hawkins Jr, M., “A note on the skin effect”, J. Pet. Tech., 8(12), 65-66, 1956.
〔31〕Brons, F., and W.C., Miller, “A simple method for correcting spot pressure readings”, J. Pet. Tech., 13(8), 803-805, 1961.
〔32〕Hurst, W., J. D. Clark, and E. B. Brauer, “The skin effect in producing wells”, J. Pet. Tech., 246, 1483-1489, 1969.
〔33〕Standing, M. B., “Calculating damage effects in well flow problem”, unpubl. notes, Standford Univ., 20 p., 1979.
〔34〕Streltsova, T. D., Well Testing in Heterogeneous Formations., John Wiley and Sons, Inc., New York, 1988.
〔35〕Novakowski, K. S., “A composite analytical model for analysis of pumping tests affected by well bore storage and finite thickness skin”, Water Resour. Res., 251(10), 1937-1946, 1989.
〔36〕Onyekonwu, M. O., “Program for designing pressure transient tests”, Computers and Geosciences, 15(7), 1067-1088, 1989.
〔37〕Ruud, N. C., and Z. J. Kabala, “Numerical evaluation of the flowmeter test in a layered aquifer with s skin zone”, J. Hydrol., 203, 101-108, 1997.
〔38〕Chen, C. S. and C. C. Chang, “Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effect: Field experiment and data analysis”, Water Resour. Res., 38(5), 1056, doi: 10. 1029/2001WR000300, 2002.
〔39〕Chen C. S., and C. C. Chang, “Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumping”, J. Hydrol., 317, 190-201, 2006.
〔40〕Kreyszig, E., Advanced Engineering Mathematics., 8th Edition, John Wiley and Sons, Inc., New York, Oct. 23,1998.
〔41〕Churchill, R. V., Operational Mathematics, McGraw-Hill, New York, 1972.
〔42〕Haberman, R., Elementary Applied Partial Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
〔43〕de Hoog, F.R., J. H. Knight and A. N. Stokes, “An improved method for numerical inversion of Laplace transforms”, SIAM. J. Sci. and Stat. Comput., 3(3), 357366, 1982.
|