博碩士論文 103326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:13.59.236.219
姓名 徐慧淳(Hui-Chun Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 中國塵霾長程傳輸對臺灣細懸浮微粒(PM2.5)濃度的影響
(The Effects of Long-range Transported Haze from China on the PM2.5 levels in Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年秋末至春初期間,源自西伯利亞的北方高壓逐漸增強向太平洋移動,臺灣盛行風向由西南轉為東北,來自中國的高濃度細懸浮微粒(PM2.5)隨著東北風傳輸到臺灣,影響臺灣的空氣品質。為了探究中國長程傳輸污染物對臺灣本地空氣品質的影響,本文參考Junker et al. (2009)及Chuang et al. (2008a)從2006年1月至2015年12月環保署萬里、基隆、宜蘭、冬山、淡水空品測站污染物監測資料及中央氣象局每日地面天氣圖資料,篩選出日平均風速? 3.7 m s-1、PM2.5 ? 25 μg m-3的長程傳輸事件日(Long Range Transport – Event, LRT – Event)、日平均風速> 3.7 m s-1、PM2.5 < 25 μg m-3的一般長程傳輸日(Long Range Transport – Ordinary, LRT – Ordinary)、日平均風速< 3.7 m s-1的混合型(LRT/LP (Local Pollution) Mix)或當地污染(Pure LP)。由各年污染類型統計結果得知,LRT – Ordinary發生頻率最高(好發於秋季至春季間),其次為LRT – Event (好發於冬季至春初間)及LRT/LP Mix or Pure LP(各季發生頻率平均)。
本文利用CMAQ模式模擬2010年1月至5月未含臺灣的東亞排放源影響,推估LRT – Event (n = 13)、LRT – Ordinary (n =32)、LRT/LP Mix or Pure LP (n = 14)對臺灣西部八個都會區測站的長程傳輸PM2.5濃度變化比例,取代表北、中、南部的新莊、忠明、小港站,並以萬里站為對比站(比例為1),三站LRT – Event比例為0.83、0.62、0.53,LRT –Ordinary (n =32)比例為0.72、0.67、1.44,LRT/LP Mix or Pure LP (n = 14)比例為0.91、1.10、1.72,受到大氣環境氣流不同變化機制影響,不同污染類型在各地影響比例差異甚大。
將模擬的2010年1月至5月期間三種長程傳輸類型在各站PM2.5濃度影響比例,代入2006年1月至2015年12月篩選出三種長程傳輸類型監測資料,用以估算長程傳輸與當地PM2.5濃度(包含臺灣本島其他地區傳輸濃度),最後得出臺灣北(新莊)、中(忠明)、南(小港)地區的長程傳輸與當地PM2.5濃度貢獻量分別為14 μg m-3 (53%)與11 μg m-3 (47%)、12 μg m-3 (37%)與21 μg m-3 (63%)、18 μg m-3 (36%)與36 μg m-3 (64%),北部PM2.5濃度主要受長程傳輸影響,中、南部地區雖受當地污染影響較高,但長程傳輸影響仍不容忽視。
以前述方法推估不同年度長程傳輸與當地污染影響PM2.5濃度,發現2013年以後,中國長程傳輸在臺灣西部各地PM2.5濃度影響逐漸下降,當地PM2.5濃度在新竹以北變動幅度小,但中部以南十年間有明顯的下降趨勢。本文分析指出:在東北季風情況下,來自中國長程傳輸的PM2.5在臺灣北部已經相當接近年平均空品標準,但持續降低當地污染源排放仍然是改善PM2.5空氣品質的有效途徑。
摘要(英) The high PM2.5 air masses from northern China usually deteriorated the air quality in Taiwan via long-range transport (LRT) from the late autumn to early spring every year. The reason is that Taiwan is located in the downwind area of Asian continent under prevailing northeasterly wind. In order to understand the impact of pollutants from LRT on the air quality in Taiwan, this study analyzed long-term air quality and meteorological data in northern Taiwan (including Wanli, Keelung, Yilang, Dongshan, and Tamsui stations) from 2006 to 2015 especially when the prevailing wind is northeasterly. The outcome of analysis referring to the method of Junker et al. (2009) and Chuang et al. (2008a) results in three types of pollution. The present study defined the first type as LRT – Event with the conditions of the daily-average wind speed ? 3.7 m s-1 and the daily-average PM2.5 ? 25 μg m-3. The second type is LRT – Ordinary when the daily-average wind speed ? 3.7 m s-1 and the daily average PM2.5 < 25 μg m-3, and the third type is LRT/LP Mix (Local Pollution) or the Pure LP when the daily-average wind speed < 3.7 m s-1. According to the statistics, LRT – Ordinary type is the most frequent occurring one usually from autumn to next spring, followed by LRT – Event also from autumn to early spring, and the LRT/LP Mix or the Pure LP appearing in every season.
This study applied the Community Multi-scale Air Quality Model (CMAQ) model to simulate a short-term (January to May 2010) scenario with emissions geographically covering the whole East Asia but excluding Taiwan. From such a simulation, this study estimated the variation ratios of LRT PM2.5 concentration in major metropolises to Wanli station, the northern tip of Taiwan. Based on this estimation, the variation ratios of LRT PM2.5 concentration over Wanli in the northern (Hsinchuang station), central (Zongming station), and southern (Xiaogang station) metropolises are 0.83, 0.62, and 0.53, respectively, for the LRT – Event type (n=13). For the LRT – Ordinary type (n=32), the variation ratios of LRT PM2.5 concentrations over Wanli in the three metropolis are 0.72, 0.67, and 1.44, respectively. As to the LRT/LP Mix or the Pure LP type (n=14), the variation ratios of LRT PM2.5 concentration over Wanli are 0.91, 1.10, and 1.72, respectively. Due to complicated mechanisms of atmospheric condition, these three types of pollution have different variation ratios in various regions.
Using 10-year air quality data and the variation ratios of the three types of pollution, the present study made estimates on the PM2.5 concentrations of LRT and LP at different metropolises. The results show that the average contributions of LRT and LP in northern, central, and southern metropolises are at 14 μg m-3 (53%) and 11 μg m-3 (47%), 12 μg m-3 (37%) and 21 μg m-3 (63%), and 18 μg m-3 (36%) and 36 μg m-3 (64%), respectively. The contribution of PM2.5 in northern Taiwan is mainly from LRT. Although the impact of LP is higher in central and southern Taiwan, the present study suggests that the contribution of LRT is not ignorable.
In terms of the contributions of LRT and LP to various stations, the PM2.5 concentrations from LRT in the western Taiwan had gradually decreased since 2013. The annual variations of PM2.5 concentration from LP were not obvious in stations north from Hsinchu, but there was a significantly downward trend in the central and southern Taiwan during the last ten years. Compared to yearly PM2.5 standard (15 μg m-3), the LRT contribution from China to PM2.5 is already near the yearly standard in northern Taiwan. However, it is practical to reduce the PM2.5 contribution from LP sources than expecting reduction of LRT contribution to meet PM2.5 daily standard (35 μg m-3).
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ 長程傳輸
★ 當地污染
★ CMAQ
關鍵字(英) ★ PM2.5
★ Long range transport (LRT)
★ Local pollutant (LP)
★ CMAQ
論文目次 目錄
摘要 V
ABSTRACT VII
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XVI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 細懸浮微粒(PM2.5)的重要性 3
2.1.1 PM2.5來源及特性 3
2.1.2 PM2.5化學成分 5
2.1.3 PM2.5對大氣環境及健康的影響 6
2.2 臺灣PM2.5的特性 9
2.3 中國塵霾的重要性 11
2.3.1 中國塵霾的定義 11
2.3.2 中國塵霾的形成及演化 13
2.4 中國PM2.5化學成分及來源 16
2.5 中國長程傳輸對臺灣的影響 20
2.5.1 長程傳輸綜觀天氣型態 20
2.5.2 長程傳輸污染物特性 22
2.6 模式模擬應用 25
第三章 研究方法 27
3.1 研究流程圖 27
3.2 觀測資料分析方法 27
3.2.1 污染物傳輸假設 27
3.2.2 污染類型分類 31
3.2.3 小時降雨量與PM2.5濃度的關係 33
3.2.4 長程傳輸事件日判定驗證 34
3.2.5 以監測資料推估長程傳輸及當地PM2.5濃度 36
3.3模式模擬方法 39
3.3.1 模擬時間 39
3.3.2 氣象模擬 – ARW-WRF 39
3.3.3 排放資料處理-SMOKE 43
3.3.4 化學模式-CMAQ 45
3.4 模式模擬資料評估方法 47
3.4.1 氣象及污染物濃度資料 47
3.4.2 WRF-CAMQ氣象評估 49
3.4.3 WRF-CAMQ污染物評估 50
3.4.4 長程傳輸PM2.5濃度平均變化比例推估 51
3.5 推估長程傳輸及當地PM2.5濃度十年變化趨勢 52
第四章 結果與討論 53
4.1 臺灣東北季風下污染類型界定 53
4.1.1 背景測站選擇 53
4.1.2 污染類型界定分析 57
4.1.3 當地PM2.5 推估曲線 64
4.1.4 長程傳輸事件日判定驗證 65
4.2 臺灣各年東北季風下污染類型特性 68
4.3 未修正的監測資料推估臺灣西部都會區長程傳輸及當地PM2.5濃度 73
4.4 臺灣西部都會區不同污染類型長程傳輸PM2.5濃度變化特性 76
4.4.1 模擬與觀測資料評估結果 76
4.4.2 不同污染類型的長程傳輸PM2.5濃度變化比例 84
4.4.3 不同污染類型的長程傳輸PM2.5濃度變化比例個案分析 92
4.5 臺灣西部都會區長程傳輸及當地PM2.5濃度推估探討 107
4.5.1 利用長程傳輸PM2.5濃度變化比例修正監測資料推估 107
4.5.2 探討監測資料及模式模擬推估長程傳輸與當地PM2.5濃度的差異 112
4.5.3長程傳輸與當地PM2.5逐年變化分析 115
4.5.4 不同污染類型PM2.5濃度貢獻 121
第五章 結論與建議 123
5.1 結論 123
5.2 建議 125
第六章 文獻回顧 126
附錄一 氣流軌跡判定與MODIS – AOD空間分布圖 135
附錄二 WRF氣象場風向評估結果 146
附錄三 長程傳輸PM2.5與風場空間分布圖(未含臺灣的東亞排放源模擬結果) 161
附錄四 監測資料與模擬資料推估長程傳輸及當地PM2.5濃度時序圖 179
附錄五 口試委員意見答覆 187


參考文獻 第六章 文獻回顧
Aikawa, M., Ohara, T., Hiraki, T., Oishi, O., Tsuji, A., Yamagami, M., Murano, K., Mukai, H., 2010. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent. Atmospheric Environment 44, 381-391.
Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M., Armstrong, B., 2010. Urban Ambient Particle Metrics and Health A Time-series Analysis. Epidemiology 21, 501-511.
Baker, K., Scheff, P., 2007. Photochemical model performance for PM2. 5 sulfate, nitrate, ammonium, and precursor species SO 2, HNO 3, and NH 3 at background monitor locations in the central and eastern United States. Atmospheric Environment 41, 6185-6195.
Bekki, S., 1995. Oxidation of volcanic SO2: a sink for stratospheric OH and H2O. Geophysical Research Letters 22, 913-916.
Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets. Journal of Geophysical Research-Atmospheres 106, 23097-23113.
Byun, D.W., Ching, J., 1999. Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system. US Environmental Protection Agency, Office of Research and Development Washington, DC.
Chan, C.-C., Chuang, K.-J., Chen, W.-J., Chang, W.-T., Lee, C.-T., Peng, C.-M., 2008. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environmental Research 106, 393-400.
Chan, T., Huang, L., Leaitch, W., Sharma, S., Brook, J., Slowik, J., Abbatt, J., Brickell, P., Liggio, J., Li, S.-M., 2010. Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada. Atmospheric Chemistry and Physics 10, 2393-2411.
Chang, S.-C., Chou, C.C.-K., Chan, C.-C., Lee, C.-T., 2010. Temporal characteristics from continuous measurements of PM 2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088-1096.
Chang, S.-C., Lee, C.-T., 2007. Evaluation of the trend of air quality in Taipei, Taiwan from 1994 to 2003. Environmental Monitoring and Assessment 127, 87-96.
Chen, L.-W.A., Chow, J.C., Doddridge, B.G., Dickerson, R.R., Ryan, W.F., Mueller, P.K., 2003. Analysis of a summertime PM2. 5 and haze episode in the mid-Atlantic region. Journal of the Air & Waste Management Association 53, 946-956.
Chen, T.-F., Chang, K.-H., Tsai, C.-Y., 2014. Modeling direct and indirect effect of long range transport on atmospheric PM 2.5 levels. Atmospheric Environment 89, 1-9.
Chen, T.-F., Tsai, C.-Y., Chang, K.-H., 2013. Performance evaluation of atmospheric particulate matter modeling for East Asia. Atmospheric Environment 77, 365-375.
Cheng, Y., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Bruggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351-6372.
Chuang, M.-T., Chiang, P.-C., Chan, C.-C., Wang, C.-F., Chang, E., Lee, C.-T., 2008a. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of the total environment 399, 128-146.
Chuang, M.-T., Fu, J.S., Jang, C.J., Chan, C.-C., Ni, P.-C., Lee, C.-T., 2008b. Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system. Science of the total environment 406, 168-179.
Chuang, M.-T., Fu, J.S., Lee, C.-T., Lin, N.-H., Gao, Y., Wang, S.-H., Sheu, G.-R., Hsiao, T.-C., Wang, J.-L., Yen, M.-C., 2015. The simulation of long-range transport of biomass burning plume and short-range transport of anthropogenic pollutants to a mountain observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment. Aerosol Air Qual. Res., doi 10.
Cotton, W.R., Pielke Sr, R., Walko, R., Liston, G., Tremback, C., Jiang, H., McAnelly, R., Harrington, J., Nicholls, M., Carrio, G., 2003. RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics 82, 5-29.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y., 2004. The characteristics of carbonaceous species and their sources in PM2. 5 in Beijing. Atmospheric Environment 38, 3443-3452.
Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air & Waste Management Association 47, 411-418.
Diapouli, E., Popovicheva, O., Kistler, M., Vratolis, S., Persiantseva, N., Timofeev, M., Kasper-Giebl, A., Eleftheriadis, K., 2014. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010. Atmospheric Environment 96, 393-404.
Ding, A., Fu, C., Yang, X., Sun, J., Petaja, T., Kerminen, V.-M., Wang, T., Xie, Y., Herrmann, E., Zheng, L., 2013. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmospheric chemistry and physics 13, 10545-10554.
Draxier, R.R., Hess, G.D., 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Australian Meteorological Magazine 47, 295-308.
Dudhia, J., 1993. A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review 121, 1493-1513.
Dui, W., 2011. Formation and evolution of haze weather. Environmental Science&Technology 34, 157-161.
Emery, C., Tai, E., Yarwood, G., 2001. Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. prepared for the Texas Near Non-Attainment Areas through the Alamo Area Council of Governments”, by ENVIRON International Corp, Novato, CA., http://www. tnrcc. state. tx. us/air/aqp/airquality_contracts. html# met01.
Feng, J., Guo, Z., Chan, C.K., Fang, M., 2007. Properties of organic matter in PM 2.5 at Changdao Island, China—a rural site in the transport path of the Asian continental outflow. Atmospheric environment 41, 1924-1935.
Fu, G., Xu, W., Yang, R., Li, J., Zhao, C., 2014. The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmospheric Chemistry and Physics 14, 11949-11958.
Fu, J., Hsu, N., Gao, Y., Huang, K., Li, C., Lin, N.-H., Tsay, S.-C., 2012. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling. Atmospheric Chemistry and Physics 12, 3837-3855.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment 42, 2023-2036.
Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B., 2005. Fully coupled “online” chemistry within the WRF model. Atmospheric Environment 39, 6957-6975.
Han, X., Zhang, M., Tao, J., Wang, L., Gao, J., Wang, S., Chai, F., 2013. Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-CMAQ. Atmospheric Environment 72, 177-191.
Heintzenberg, J., 1989. Fine particles in the global troposphere a review. Tellus B 41, 149-160.
Hitzenberger, R., Berner, A., Giebl, H., Kromp, R., Larson, S., Rouc, A., Koch, A., Marischka, S., Puxbaum, H., 1999. Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols. Atmospheric Environment 33, 2647-2659.
Hua, Y., Cheng, Z., Wang, S., Jiang, J., Chen, D., Cai, S., Fu, X., Fu, Q., Chen, C., Xu, B., 2015. Characteristics and source apportionment of PM 2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmospheric Environment 123, 380-391.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K.R., Slowik, J.G., Platt, S.M., Canonaco, F., 2014a. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218-222.
Huang, X., Yun, H., Gong, Z., Li, X., He, L., Zhang, Y., Hu, M., 2014b. Source apportionment and secondary organic aerosol estimation of PM2. 5 in an urban atmosphere in China. Science China Earth Sciences 57, 1352-1362.
Jiang, J., Zhou, W., Cheng, Z., Wang, S., He, K., Hao, J., 2015. Particulate matter distributions in China during a winter period with frequent pollution episodes (January 2013). Aerosol Air Qual. Res 15, 494-503.
Jiang, X., Wiedinmyer, C., Carlton, A.G., 2012. Aerosols from fires: An examination of the effects on ozone photochemistry in the Western United States. Environmental science & technology 46, 11878-11886.
Junker, C., Wang, J.-L., Lee, C.-T., 2009. Evaluation of the effect of long-range transport of air pollutants on coastal atmospheric monitoring sites in and around Taiwan. Atmospheric Environment 43, 3374-3384.
Kang, H., Zhu, B., Su, J., Wang, H., Zhang, Q., Wang, F., 2013. Analysis of a long-lasting haze episode in Nanjing, China. Atmospheric Research 120, 78-87.
Kim, S.-W., Yoon, S.-C., Won, J.-G., Choi, S.-C., 2007. Ground-based remote sensing measurements of aerosol and ozone in an urban area: A case study of mixing height evolution and its effect on ground-level ozone concentrations. Atmospheric Environment 41, 7069-7081.
Koo, Y.-S., Kim, S.-T., Yun, H.-Y., Han, J.-S., Lee, J.-Y., Kim, K.-H., Jeon, E.-C., 2008. The simulation of aerosol transport over East Asia region. Atmospheric research 90, 264-271.
Lai, L.-W., 2015. Fine particulate matter events associated with synoptic weather patterns, long-range transport paths and mixing height in the Taipei Basin, Taiwan. Atmospheric Environment 113, 50-62.
Lee, Y.-N., Springston, S., Jayne, J., Wang, J., Hubbe, J., Senum, G., Kleinman, L., Daum, P.H., 2014. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign. Atmospheric Chemistry and Physics 14, 5057-5072.
Leiva, M.A., Santibanez, D.A., Ibarra E, S., Matus C, P., Seguel, R., 2013. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution 181, 1-6.
Li, L., Wang, W., Feng, J., Zhang, D., Li, H., Gu, Z., Wang, B., Sheng, G., Fu, J., 2010. Composition, source, mass closure of PM 2.5 aerosols for four forests in eastern China. Journal of Environmental Sciences 22, 405-412.
Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D., Carmichael, G., 2015. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmospheric Chemistry and Physics Discussions 15, 34813-34869.
Liang, Q., Jaegle, L., Jaffe, D.A., Weiss-Penzias, P., Heckman, A., Snow, J.A., 2004. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide. Journal of Geophysical Research-Atmospheres 109.
Lin, C.-Y., Liu, S.C., Chou, C.C.-K., Huang, S.-J., Liu, C.-M., Kuo, C.-H., Young, C.-Y., 2005. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment 39, 6066-6076.
Lin, C.-Y., Liu, S.C., Chou, C.C., Liu, T.H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., Young, C.-Y., 2004. Long-range transport of Asian dust and air pollutants to Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 15, 759-784.
Lin, N.-H., Sayer, A.M., Wang, S.-H., Loftus, A.M., Hsiao, T.-C., Sheu, G.-R., Hsu, N.C., Tsay, S.-C., Chantara, S., 2014. Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives. Environmental Pollution 195, 292-307.
Liousse, C., Penner, J., Chuang, C., Walton, J., Eddleman, H., Cachier, H., 1996. A global three?dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres 101, 19411-19432.
Liu, X., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., 2013. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China. Atmos. Chem. Phys 13, 4501-4514.
Lonati, G., Ozgen, S., Giugliano, M., 2007. Primary and secondary carbonaceous species in PM2. 5 samples in Milan (Italy). Atmospheric Environment 41, 4599-4610.
Lundgren, D.A., Burton, R.M., 1995. EFFECT OF PARTICLE-SIZE DISTRIBUTION ON THE CUT POINT BETWEEN FINE AND COARSE AMBIENT MASS FRACTIONS. Inhalation Toxicology 7, 131-148.
McKendry, I., Hacker, J., Stull, R., Sakiyama, S., Mignacca, D., Reid, K., 2001. Long-range transport of Asian dust to the lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research. D. Atmospheres 106, 2-4.
Meng, Z., Jiang, X., Yan, P., Lin, W., Zhang, H., Wang, Y., 2007. Characteristics and sources of PM 2.5 and carbonaceous species during winter in Taiyuan, China. Atmospheric Environment 41, 6901-6908.
Morawska, L., 2003. Environmental aerosol physics. Brisbane, Queensland University of Technology.
Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size-differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Na, K., Sawant, A.A., Song, C., Cocker, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
O′brien, D., Mitchell, R., 2003. Atmospheric heating due to carbonaceous aerosol in northern Australia—confidence limits based on TOMS aerosol index and sun-photometer data. Atmospheric Research 66, 21-41.
O′Doherty, S., Simmonds, P., Cunnold, D., Wang, H., Sturrock, G., Fraser, P., Ryall, D., Derwent, R., Weiss, R., Salameh, P., 2001. In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998. Journal of Geophysical Research: Atmospheres 106, 20429-20444.
Pachauri, T., Satsangi, A., Singla, V., Lakhani, A., Kumari, K.M., 2013. Characteristics and Sources of Carbonaceous Aerosols in PM2.5 during Wintertime in Agra, India. Aerosol and Air Quality Research 13, 977-991.
Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics 26, 2269-2282.
Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., Zhao, D., 2014. Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmospheric Environment 88, 83-89.
Quan, J., Zhang, Q., He, H., Liu, J., Huang, M., Jin, H., 2011. Analysis of the formation of fog and haze in North China Plain (NCP). Atmospheric Chemistry and Physics 11, 8205-8214.
Saltzman, E., Brass, G., Price, D., 1983. The mechanism of sulfate aerosol formation: Chemical and sulfur isotopic evidence. Geophysical Research Letters 10, 513-516.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Skamarock, W.C., Klemp, J.B., 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227, 3465-3485.
Tie, X., Madronich, S., Walters, S., Edwards, D.P., Ginoux, P., Mahowald, N., Zhang, R., Lou, C., Brasseur, G., 2005. Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research: Atmospheres 110.
Tsai, J.-H., Tsai, S.-M., Wang, W.-C., Chiang, H.-L., 2016. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan. Environmental Science and Pollution Research, 1-16.
Tsai, Y.I., Chen, C.-L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM 2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Tsay, S.-C., Hsu, N.C., Lau, W.K.-M., Li, C., Gabriel, P.M., Ji, Q., Holben, B.N., Welton, E.J., Nguyen, A.X., Janjai, S., 2013. From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmospheric Environment 78, 20-34.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Valdes, A., Zanobetti, A., Halonen, J.I., Cifuentes, L., Morata, D., Schwartz, J., 2012. Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: a time series study. Environmental Health 11.
Van de Vate, J.F., 1980. Investigations into the dynamics of aerosols in enclosures as used for air pollution studies.
Van Donkelaar, A., Martin, R.V., Park, R.J., 2006. Estimating ground?level PM2. 5 using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research: Atmospheres 111.
Wang, H.-J., Chen, H.-P., 2016. Understanding the recent trend of haze pollution in eastern China: roles of climate change. Atmospheric Chemistry and Physics 16, 4205-4211.
Wang, H., Tan, S.-C., Wang, Y., Jiang, C., Shi, G.-y., Zhang, M.-X., Che, H.-Z., 2014a. A multisource observation study of the severe prolonged regional haze episode over eastern China in January 2013. Atmospheric Environment 89, 807-815.
Wang, L., Xu, J., Yang, J., Zhao, X., Wei, W., Cheng, D., Pan, X., Su, J., 2012. Understanding haze pollution over the southern Hebei area of China using the CMAQ model. Atmospheric Environment 56, 69-79.
Wang, S.-H., Hung, W.-T., Chang, S.-C., Yen, M.-C., 2016. Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmospheric Environment 126, 76-86.
Wang, T., Wei, X., Ding, A., Poon, S.C., Lam, K., Li, Y., Chan, L., Anson, M., 2009. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007. Atmospheric Chemistry and Physics.
Wang, X., Bi, X., Sheng, G., Fu, J., 2006. Chemical composition and sources of PM10 and PM2. 5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment 119, 425-439.
Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., Xin, J., 2014b. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences 57, 14-25.
Watts, W.F., Gladis, D.D., Schumacher, M.F., Ragatz, A.C., Kittelson, D.B., 2010. Evaluation of a portable photometer for estimating diesel particulate matter concentrations in an underground limestone mine. Annals of occupational hygiene, meq020.
Wen, L., Chen, J., Yang, L., Wang, X., Xu, C., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T., 2015. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: the important roles of ammonia and ozone. Atmospheric Environment 101, 294-302.
Whitby, K., Cantrell, B., 1976. Atmospheric aerosols- Characteristics and measurement, International Conference on Environmental Sensing and Assessment, Las Vegas, Nev, p. 1.
Xu, H., Guinot, B., Shen, Z., Ho, K.F., Niu, X., Xiao, S., Huang, R.-J., Cao, J., 2015. Characteristics of organic and elemental carbon in PM2. 5 and PM0. 25 in indoor and outdoor environments of a middle school: Secondary formation of organic carbon and sources identification. Atmosphere 6, 361-379.
Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., 2011. Characteristics of PM 2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics 11, 5207-5219.
Yang, H., Yu, J.Z., Ho, S.S.H., Xu, J., Wu, W.-S., Wan, C.H., Wang, X., Wang, X., Wang, L., 2005. The chemical composition of inorganic and carbonaceous materials in PM 2.5 in Nanjing, China. Atmospheric Environment 39, 3735-3749.
Yang, Y., Liao, H., Lou, S., 2016. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. Journal of Geophysical Research: Atmospheres 121.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Ye, B., Ji, X., Yang, H., Yao, X., Chan, C.K., Cadle, S.H., Chan, T., Mulawa, P.A., 2003. Concentration and chemical composition of PM 2.5 in Shanghai for a 1-year period. Atmospheric Environment 37, 499-510.
Ye, X., Ma, Z., Zhang, J., Du, H., Chen, J., Chen, H., Yang, X., Gao, W., Geng, F., 2011. Important role of ammonia on haze formation in Shanghai. Environmental Research Letters 6, 024019.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee, Y.-A., Lin, C.-C., 2013. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment 78, 35-50.
Yorifuji, T., Kawachi, I., Sakamoto, T., Doi, H., 2011. Associations of Outdoor Air Pollution With Hemorrhagic Stroke Mortality. J. Occup. Environ. Med. 53, 124-126.
Yu, X., Zhu, B., Yin, Y., Yang, J., Li, Y., Bu, X., 2011. A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region. Atmospheric Research 99, 241-247.
Zanobetti, A., Schwartz, J., 2009. The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis. Environ. Health Perspect. 117, 898-903.
Zhang, M., Pu, Y., Zhang, R., Han, Z., 2006. Simulation of sulfur transport and transformation in East Asia with a comprehensive chemical transport model. Environmental Modelling & Software 21, 812-820.
Zhang, M.G., Uno, I., Carmichael, G.R., Akimoto, H., Wang, Z.F., Tang, Y.H., Woo, J.H., Streets, D.G., Sachse, G.W., Avery, M.A., Weber, R.J., Talbot, R.W., 2003. Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research-Atmospheres 108.
Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., Zhao, D., 2015. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Science of the Total Environment 502, 578-584.
Zhao, X., Zhao, P., Xu, J., Meng, W., Pu, W., Dong, F., He, D., Shi, Q., 2013. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmospheric Chemistry and Physics 13, 5685-5696.
Zhu, Y.-G., Ioannidis, J.P., Li, H., Jones, K.C., Martin, F.L., 2011. Understanding and harnessing the health effects of rapid urbanization in China. Environmental science & technology 45, 5099-5104.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.


指導教授 李崇德、莊銘棟(Chung-Te Lee Ming-Tung Chuang) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明