博碩士論文 100326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:52.14.33.175
姓名 陳宣?(Hsuan-Hsuan Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多功能有機層柱改質黏土之製備與吸持特性之研究
(The preparation of multiple functions pillars by modified clay for sorption of organic and inorganic pollutants)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大部分土壤表面帶負電荷對於金屬陽離子具高親和力,但因為有機質含量偏低導致對環境中占有機污染物絕大部分的非離子有機污染物不具吸持特性。傳統利用大型有機陽離子(HDTMA)改質土壤可增加土壤有機質含量並增加其對有機污染物之吸持能力,但所增加之土壤有機質無法同時顯現出對重金屬的親和力。藉此本研究積極研發可同時吸持有機與無機污染物之多重功能吸附劑,以蒙特石為改質基材探討具不同特殊官能基(包括-SH、-S、-NH2、-COOH)之有機改質劑以陽離子交換法及接枝法植入蒙特石層隙,使其同時對有機污染物與無機污染物兼具吸持特性,其中亦選擇胺類改質劑經由質子化的方式降低長烷基鏈的疏水性。分析結果證實改質蒙特石之表面存在胺基、硫醚或硫醇基等官能基,且陽離子改質法比接枝法更能將改質劑插入於蒙特石層隙中亦對重金屬離子有較大親和力。
改質劑的碳鏈長度與非離子有機污染物的親和力有很大的相關性,但前述研究缺點為當蒙特石引入官能基時會增加蒙特石之極性,導致削弱其對非離子有機污染物的親和力,且對無機污染物之吸附僅止於一般常見之重金屬。因此,本研究另以不同碳鏈長度以及具苯環結構之有機改質劑完成層柱狀土壤表面修飾,以利於後續大型團聯共聚物的植入。結果顯示碳鏈長度高達C38之改質劑已成功植入蒙特石中且擴大其層隙間距達50A以上。層柱狀土壤除擴大土壤層隙外,具較長直碳鏈結構之層柱亦可提供良好的疏水分佈環境。
層柱狀改質蒙特石之主要目的為利於大型團聯共聚物的植入,其中參與聚合的團聯單聚物於特殊條件下其表面官能基可分別呈現正或負電特性而對陰或陽離子產生極高的親和力,最終形成可同時對非離子(BTEX)、陰離子(Cr2O72-)及陽離子重金屬(Cu2+、Zn2+)污染物兼具高吸持(附)特性的蒙特石複合材料。由NMR鑑定確定RAFT聚合法可以成功合成三團聯共聚物,三團聯共聚物改質之蒙特石透過調整反應條件來進行有機與無機污染物吸附,其中甲基丙烯酸二甲胺乙酯(D)單聚物在酸性溶液中可吸附Cr2O72-,研究成果證明在低pH值(pH=3)有最佳的吸附效果且飽和吸附量可達107066 mg/kg,當pH值愈高吸附能力則降低。另外甲基丙烯酸(A) 單聚物亦被證實可於水溶液(pH=6)中吸附Cu2+及Zn2+,其中吸附Cu2+之飽和吸附量達9969 mg/kg,團聯共聚物的甲基丙烯酸甲酯(M) 單聚物則提供BTEX良好的分佈介質,結果顯示改質蒙特石的log Kom明顯大於天然土壤,代表其對有機污染物能提供更有效的分佈介質。本研究成果完成同時對非離子、陰離子及陽離子污染物兼具高吸持特性的蒙特石複合材料已顛覆一般對傳統吸附劑的認知。
摘要(英) The current remediation technologies are not effective for the simultaneous removal of both organic and inorganic contaminants from the contaminated sites due to their different characteristics. In two decades ago, we had used a high molecular organic compound (HDTMA) to modify soil to enhance the SOM content, which increases the ability of organic compounds partitioning to the soil.
One of the studies highlighted the preparation of adsorbents for both organic and inorganic pollutants by modifying sodium montmorillonite using different functionalized modifiers. The effects of different functional groups, including –SH,–S,–NH2,–COOH, of the modifier on the sorption are discussed. Since the long hydrocarbon chains, the water solubility of modifiers is restricted, the materials are prepared by cation exchanging with alkylammonium ions, and protonated of amine group in alkyl polyamine halide to increases water solubility. In addition, we were exploring the influence of different processing methods, via cation exchange and grafting, on the structure, physical and chemical characteristics and adsorption ability of modified montmorillonites. The adsorption behavior of the modified montmorillonites for both inorganic and organic pollutants was also discussed based on the structural and surface properties. The successful grafting of modifiers onto the interlayer was confirmed by spectral analysis. However, adsorption was mainly controlled not only by surface area but also by the nature and surface charge of the modifiers. Based on the experimental results, the soil modifier significant improved the sorption characteristics and, among two metal ions, Cu2+ showed enhanced adsorption. The uptake phenomenon was influenced by various combined factors such as the nature, surface charge and surface area of the modified soils.
Due to small interlamellar spacing of the hydrophilic layered silicate surface of montmorillonite, the intercalated species are capable of increasing the interlayer spacing as pillars. According to the above principle, we present another method to modify soil using the specific modifier. The modified pillared soil could adsorb both the organic contaminants and the heavy metals simultaneously. The effect of different modifiers with different chain lengths on the d-spacing of montmorillonite was studied and discussed in detail. XRD experiments were carried out and it was found that the modifier with a longer carbon chain comparatively enhanced the interlamellar spacing than that of other modifiers. The influence of HCl, the amount of modifiers and temperature on the interlayer structure was also discussed. In addition, the alkyl chain on the soil surface can be regarded as a partition medium.
Although, quaternary ammonium salt can effectively improve the organic matter content of the soil and recent researches on amine modified soil showed that under certain conditions, they can be used as dual adsorbents for the removal of both organic and inorganic pollutants, but the removal of nonionic organic compounds (NOCs) is not effective. Thus the final study was to propose a new concept to use clay composite materials in which polymers are intercalated into interlayer of clay. Such clay composite can possess positive and negative charges and thus can act as versatile adsorbents for both organic and inorganic pollutants (cation and anion).
Finally, this study chooses a methyl methacylate (M), methacrylic acid (A) and dimethylaminoethyl methacrylate (D) to synthesize triblock polymers. The triblock copolymers successfully synthesized by RAFT polymerization method were confirmed by nuclear magnetic resonance (NMR) spectral analysis. In acidic conditions, the dimethylaminoethyl methacrylate is protonated (positively charged) which can be used for anionic pollutants, and in alkaline solution, methacrylic acid can possess negative charge which can adsorb inorganic heavy metal pollutants. Furthermore, methyl methacylate is considered to greatly enhance the distribution of NOCs in the hydrophobic environment. Not only sorption of different pollutants was carried out using these clay synthesized composite materials, but also the effect of pH and other parameters were studied. A systematic study was carried out in depth in order to understand the mechanism and various factors that can affect the adsorption phenomenon. Uptake of both organic (benzene; toluene; ethylbenzene; and xylene; in brief BTEX) and inorganic (Cu2+, Zn2+ and Cr2O7 2-) pollutants were explored and highlighted in the final study. The observed log Koc values for the distribution of organic pollutants onto clay are significantly high in this study. In all cases the adsorption of Cu2+ was comparatively larger than that of Zn2+. The affinity of modified clay for Cr2O72- is increased owing to the occurrence of pH value decreased. The obtained log Koc and log Kom values of BTEX in this study for modified montmorillonite are comparatively larger than those of unmodified montmorillonite or natural soil. The self-synthesized triblock copolymers were embedded in the pillared layered clays, that displayed enhanced adsorption of both organic and inorganic pollutants and hence it was concluded as a great potential candidate.
關鍵字(中) ★ 改質土壤
★ 蒙特石
★ 層柱
★ 三團聯共聚物
★ 分佈介質
關鍵字(英) ★ Montmorillonite
★ Triblock Copolymer
★ Intercalation
★ Modify clay
★ Sorption
論文目次 目錄
目次 頁次
目錄 ……………………………………………………………………………… I
圖目錄 ……………………………………………………………………………… VII
表目錄 ……………………………………………………………………………… XVI

第一章 前言………………………………………………… 1
1-1 研究緣起…………………………………………… 1
1-2 研究目的與內容…………………………………… 3
第二章 文獻回顧…………………………………………… 8
2-1 土壤性質…………………………………………… 8
2-1-1 土壤無機相………………………………………… 9
2-1-2 土壤有機質………………………………………… 10
2-1-3 土壤表面積………………………………………… 11
2-1-4 土壤陽離子交換容量……………………………… 11
2-1-5 土壤與界面活性劑間的作用……………………… 14
2-2 土壤無機相吸附作用……………………………… 15
2-3 土壤有機相的兩相間分佈作用…………………… 18
2-3-1 水系統對土壤分佈作用之影響…..……………. …. 19
2-3-2 有機化合物溶解度與分佈作用的關係…………… 22
2-3-3 有機碳分佈常數(Koc)……………………………… 24
2-4 團聯共聚物………………………………………… 25
2-4-1 團聯共聚物之合成…………………………………. 28
2-4-2 pH對團聯共聚物的影響…………………………… 32
2-4-3 團聯共聚物之應用………………………………… 33
2-5 層狀黏土之有機化合物修飾……………………… 36
2-5-1 層狀黏土之分散型態….…………………………… 37
2-5-2 層狀黏土中層柱的排列型態..……………………… 39
2-5-3 層柱的種類…………………………………………. 41
2-5-4 層柱組成之改質方法………………………………. 43
2-6 團聯共聚物於介質表面之反應機制與應用……….. 48
2-6-1 熱力學分析………………………….………………. 48
2-6-2 層狀矽酸鹽層隙間共聚物的嵌入……..…………… 49
2-6-3 團聯共聚物於介質表面之應用.…………………… 53
第三章 研究方法…………………………………….. ……... 56
3-1 研究內容與流程……………………………………. 56
3-2 實驗設備與儀器……………………………………. 62
3-2-1 實驗設備……………………………………………. 62
3-2-2 實驗儀器……………………………………………. 63
3-3 實驗材料……………………………………………. 70
3-4 實驗方法…………………………………………….. 77
3-4-1 陽離子交換改質土壤………………………………. 78
3-4-2 接枝法改質土壤……………………………………. 79
3-4-3 團聯共聚物預聚合…………………………….. …. 79
3-4-4 層柱改質土壤之團聯共聚物的嵌入與鍵結……… 81
3-4-5 改質土壤對重金屬之吸附實驗…………………… 82
3-4-6 改質土壤對無機陰離子之吸附…………………… 83
3-4.7 改質土壤對NOCs之吸持實驗…………….. ……. 83
第四章 多重官能基長烷基鏈之改質土壤……………... … 85
4-1 有機修飾蒙特石之特性鑑定……………………… 85
4-1-1 掃描式電子顯微鏡( SEM )………...…………. 90
4-1-2 傅利葉轉換紅外線光譜儀…………………. ……… 92
4-1-3 元素分析儀…………...……………………….. …… 97
4-1-4 氮氣吸附孔隙儀分析………………………..……… 99
4-1-5 X 光繞射分析……...…………..…………........ ….. 105
4-2 有機修飾土壤對無機汙染物之吸附……...……….. 108
4-2-1 特殊官能基改質劑對吸附重金屬之影響………… 110
4-2-2 不同改質方法對吸附重金屬之影響………………. 115
4-3 有機修飾土壤對有機污染物之吸持作用.... ……… 119
4-3-1 有機碳含量分析………..………….................. …… 119
4-3-2 不同有機污染物(BTEX)之吸持行為…….. …… 121
4-3-3 不同改質土壤對BTEX之吸持作用……………… 124
4-3-4 不同改質方法對BTEX之吸持作用……………… 128
4-3-5 改質土壤對BTEX分佈係數(Kom/Koc)之影響…….. 131
4-4 本章結論……...…………..…………........................ 139
第五章 層柱改質土壤……………………………….……… 140
5-1 層柱改質土壤之特性鑑定………………………….. 140
5-1-1 傅利葉轉換紅外線光譜儀………………........ ……. 143
5-1-2 氮氣吸附孔隙儀分析……………………………….. 146
5-1-3 小角度X-ray繞射分析…..…………...…………….. 149
5-1-3-1 不同有機改質劑嵌入土壤之影響...………………... 149
5-1-3-2 改質劑添加比例對改質土壤之影響……………….. 153
5-1-3-3 HCl添加量對嵌入土壤的影響…………………….. 157
5-1-3-4 反應時間對改質土壤的影響………………………. 158
5-1-3-4 反應溫度對改質土壤的影響……………………….. 160
5-2 層柱改質黏土對無機污染物之吸附……...………... 162
5-2-1 層柱對Cu2+之吸附實驗……………………………. 162
5-2-2 層柱對Zn2+之吸附實驗……………………………. 165
5-3 層柱改質土壤對有機污染物之吸持作用…............. 167
5-3-1 有機碳含量分析……..…………............................... 167
5-3-2 有機污染物(BTEX)之吸持行為............ ………… 169
5-3-3 不同層柱改質土壤對BTEX之吸持作用.................. 172
5-3-4 改質劑添加比例對BTEX之吸持作用............ …… 175
5-3-5 層柱改質土壤之BTEX校正分佈係數(Kom/Koc)…... 178
5-4 本章結論..…...…………..…………........................... 184
第六章 團聯共聚物之改質土壤………………..……….. ..... 186
6-1 團聯共聚物預聚合之特性分析…………………..... 187
6-1-1 團聯共聚物之GPC分子量分析..………………. ..... 188
6-1-2 團聯共聚物之NMR結構鑑定………...………....... 190
6-2 改質土壤之團聯共聚物的嵌入與鍵結…………...... 197
6-2-1 穿透式電子顯微鏡(TEM)……………………..... 198
6-2-2 小角度X-ray繞射分析………………...………....... 206
6-3 團聯共聚物改質土壤對無機污染物之吸附......... .... 209
6-3-1 對重金屬之吸附作用……………………………..... 209
6-3-2 對無機陰離子之吸附作用……………………........ 216
6-4 團聯共聚物改質土壤對有機汙染物之吸持........... 221
6-4-1 有機碳含量分析……..…………...................... ....... 221
6-4-2 對有機污染物之吸持作用…………….............. ...... 223
6-4-3 不同改質土壤對BTEX之吸持作用................. ....... 226
6-4-4 改質土壤之BTEX校正分佈係數(Kom/Koc)..... ....... 229
6-5 本章結論……...…………..…………..... ..... ..... ...... 232
第七章 結論與建議…..…………………………………... .... 234
7-1 結論…………………………………………………. 234
7-2 建議………………………………………………… 237
參考文獻 ……………………………………………………….. ..... 239


















圖目錄
目次 頁次
圖1-1 改質土壤示意圖……..…………...................... ....... . ....... . ....... 4
圖1-2 嵌入層柱改質土壤示意圖……..…………...................... .......... 5
圖1-3 自行合成三團聯共聚物之示意圖................. ....... . ....... . ......... 5
圖1-4 團聯共聚物直接嵌入未改質土壤之示意圖................. ....... . ... 6
圖1-5 團聯共聚物嵌入層狀黏土層隙間之示意圖................. .............. 6
圖1-6 多功能有機改質黏土吸持實驗之示意圖................. ....... . ........ 7
圖2-1 土壤中有機相及無機相示意圖................. ....... . ....... . ....... . .... 8
圖2-2 2:1型黏土礦物示意圖……..…………...................... ....... . ....... 10
圖2-3 土壤中陽離子交換示意圖……..…………...................... ........... 13
圖2-4 吸附在土壤上界面活性劑之形態……..…………...................... 14
圖2-5 不同水份相對含量(R.H.)對吸附的影響................. ....... . .......... 20
圖2-6 土壤有機相與無機相於乾燥及水飽和相中作用示意圖. .......... 21
圖2-7 有機化合物之Kow與Sw間的關係圖................. ....... . ............... 23
圖2-8 log Kom 實驗值及理想值對log SV之關係圖................. .......... 23
圖2-9 共聚物(copolymer)的組合的方式................. ....... . ....... . .......... 26
圖2-10 (a) 雙團聯共聚物在不同組成時所呈現的結構. ....... . ............
(b) 三團聯共聚物由不同分子量及組成所產生的各種結構…. 27
圖2-11 微相分離之團聯共聚物常見型態................. ....... . ....... . ......... 28
圖2-12 鏈轉移劑................. ....... ................. ....... ................. ....... . ........ 32
圖2-13 微胞化三團聯共聚物,其pH影響示意圖................. ....... . ....... 33
圖2-14 Pluronic團聯共聚物示意圖................. ....... ................. ............. 34
圖2-15 利用團聯共聚物製作中孔洞模板之步驟示意圖................. ...... 35
圖2-16 三團聯共聚物(EPE2900)抑制銅沉澱示意圖................. ............ 36
圖2-17 改質後層狀黏土的四種不同形態................. ....... . ....... . .......... 39
圖2-18 改質劑在黏土層間內排列型態................. ....... . ....... . .............. 40
圖2-19 不同CEC量的改質劑使矽酸鹽板間呈現不同的層隙距離. ..... 40
圖2-20 後修飾法之反應方程式................. ....... ................. ....... . .......... 46
圖2-21 後修飾法之反應機制流程圖................. ....... ................. ............ 46
圖2-22 接枝改質土壤示意圖................. ....... ................. ....... . ....... . .... 47
圖2-23 利用改質劑改質黏土之實驗示意圖................. ....... . ....... . ..... 48
圖2-24 吸附分散法示意圖................. ....... ................. ....... . ....... . ....... 50
圖2-25 剪切力作用使得黏土的矽酸鹽層脫層示意圖................. .......... 51
圖2-26 熔融插層法示意圖................. ....... ................. ....... ................. .. 52
圖2-27 原位插層聚合法示意圖................. ....... ................. ....... . .......... 53
圖2-28 以改質蒙特土後添加高分子共聚物形成奈米複合材料示意圖… 54
圖2-29 親水性藥物與蒙特土合成為奈米複合材料之示意圖. ............. 54
圖3-1 研究架構圖................. ....... ................. ....... ................. ....... . .... 57
圖3-2 陽離子交換法改質黏土示意圖................. ....... ................. ...... 58
圖3-3 接枝法改質黏土示意圖................. ....... ................. ....... . ......... 59
圖3-4 團聯共聚物嵌入土壤實驗流程示意圖................. ....... . ........... 60
圖3-5 改質黏土同時對無機與有機污染物吸持之示意圖. ....... . ....... 61
圖3-6 布拉格繞射……..…………...................... ....... ................. ....... 65
圖3-7 純化黏土基質之製備示意圖................. ....... ................. ........... 77
圖3-8 陽離子交換法改質土壤之製備示意圖................. ....... . ............ 78
圖3-9 接枝法改質土壤之製備示意圖................. ....... ................. ....... 79
圖3-10 RAFT聚合之鏈轉移劑................. ....... ................. ....... . ............ 81
圖4-1 MMT之SEM圖( a:500x、b:5000x)................. ............. 91
圖4-2 HM-CE 之SEM圖( a:500x、b:5000x)................. ....... 91
圖4-3 HDS-CE之SEM圖( a:500x、b:5000x)................. ....... 91
圖4-4 PDA-CE之SEM圖( a:500x、b:5000x)................. ....... 92
圖4-5 MMT之紅外線光譜圖................. ....... ................. ....... . .......... 94
圖4-6 BAT-CE之紅外線光譜圖................. ....... ................. ....... . ....... 94
圖4-7 TDBA-CE之紅外線光譜圖................. ....... ................. .............. 94
圖4-8 HM-CE之紅外線光譜圖................. ....... ................. ....... . ........ 94
圖4-9 PDA-CE之紅外線光譜圖................. ....... ................ ....... ........ 94
圖4-10 ADA-CE之紅外線光譜圖................. ....... ................ ....... ........ 95
圖4-11 DDC-CE之紅外線光譜圖................ ....... ................. ....... . ....... 95
圖4-12 ODC-CE之紅外線光譜圖................. ....... ................ ....... ........ 95
圖4-13 HDS-CE之紅外線光譜圖................. ....... ................ ....... ........ 95
圖4-14 TP-CE之紅外線光譜圖................. ....... ................ ....... ............ 96
圖4-15 TP-GT之紅外線光譜圖................. ....... ................ ....... ............ 96
圖4-16 MTS-CE之紅外線光譜圖................. ....... ................ ....... ........ 96
圖4-17 MTS-GT之紅外線光譜圖................. ....... ................ ....... ........ 96
圖4-18 MMT之氮氣等溫吸附曲線................. ....... ................ ....... ...... 101
圖4-19 BAT-CE之氮氣等溫吸附曲線................. ....... ................ ....... . 101
圖4-20 TDBA-CE之氮氣等溫吸附曲線................. ....... ................ ....... 101
圖4-21 HM-CE之氮氣等溫吸附曲線................. ....... ................ ........... 102
圖4-22 PDA-CE之氮氣等溫吸附曲線................. ....... ................ ........ 102
圖4-23 ADA-CE之氮氣等溫吸附曲線................. ....... ................ ........ 102
圖4-24 DDC-CE之氮氣等溫吸附曲線................. ....... ................ ......... 102
圖4-25 ODC-CE之氮氣等溫吸附曲線................. ....... ................ ......... 102
圖4-26 HDS-CE之氮氣等溫吸附曲線................. ....... ................ ......... 102
圖4-27 TP-CE之氮氣等溫吸附曲線................. ....... ................ ............. 103
圖4-28 TP-GT之氮氣等溫吸附曲線................. ....... ................ ............ 103
圖4-29 MTS-CE之氮氣等溫吸附曲線................. ....... ................ ....... 103
圖4-30 MTS-GT之氮氣等溫吸附曲線................. ....... ................ ....... 103
圖4-31 不同改質土壤之XRD圖譜................. ....... ................ ............... 107
圖4-32 不同改質方法之改質土壤XRD圖譜................. ....... ................ 108
圖4-33 未改質土壤對Cu2+ 與Zn2+ 之Freundlich吸附等溫線圖. ....... 109
圖4-34 改質土壤對Cu2+ 吸附之Freundlich等溫吸附曲線. ....... . ....... 114
圖4-35 不同改質土壤對Zn2+ 吸附之Freundlich 等溫吸附曲線. ......... 114
圖4-36 不同改質方法對Cu2+ 吸附之Freundlich等溫吸附曲線. ......... 116
圖4-37 不同改質方法對Zn2+ 吸附之Freundlich等溫吸附曲線. ......... 117
圖4-38 不同改質土壤對BTEX之等溫吸附線....... ................ ... . ......... 122
圖4-39 不同改質土壤對Benzene之等溫吸附線圖....... ................ ...... 126
圖4-40 不同改質土壤對Toluene之等溫吸附線圖....... ................ ....... 126
圖4-41 不同改質土壤對Ethylbenzene之等溫吸附線圖....... ................ 127
圖4-42 不同改質土壤對p-Xylene之等溫吸附線圖....... ................ ...... 127
圖4-43 不同改質方法之土壤對Benzene之等溫吸附線圖. ....... . ......... 129
圖4-44 不同改質方法之土壤對Toluene之等溫吸附線圖. ....... . .......... 129
圖4-45 不同改質方法之土壤對Ethylbenzene之等溫吸附線圖. ........... 130
圖4-46 不同改質方法之土壤對p-Xylene之等溫吸附線圖. .................. 130
圖5-1 MMT之紅外線光譜圖................. ....... ................ ....... . ............ 144
圖5-2 CTMAB+SSTA之紅外線光譜圖................. ....... ................ ..... 144
圖5-3 CDT之紅外線光譜圖................. ....... ................ ....... . ....... . .... 145
圖5-4 DTDAC之紅外線光譜圖................. ....... ................ ....... . ....... 145
圖5-5 D18C之紅外線光譜圖................. ....... ................ ....... . ............ 145
圖5-6 BZLT之紅外線光譜圖................. ....... ................ ....... . ............ 145
圖5-7 MMT之氮氣等溫吸附曲線................. ....... ................ ....... . .... 147
圖5-8 CTMAB+SSTA之氮氣等溫吸附曲線....... ................ ... . ......... 147
圖5-9 ODC之氮氣等溫吸附曲線................. ....... ................ ....... . ..... 147
圖5-10 DTDAC之氮氣等溫吸附曲線................. ....... ................ ......... 147
圖5-11 D18C之氮氣等溫吸附曲線................. ....... ................ .............. 148
圖5-12 BZLT之氮氣等溫吸附曲線................. ....... ................ .............. 148
圖5-13 不同改質土壤之SAXS圖譜................. ....... ................ ............. 151
圖5-14 改質土壤機制和改質劑於土壤中可能的排列示意圖. ....... . .... 152
圖5-15 ODC不同添加量改質土壤之SAXS圖譜....... ................ ......... 154
圖5-16 DTDAC不同添加量改質土壤之SAXS圖譜....... ................ .... 154
圖5-17 BZLT不同添加量改質土壤之SAXS圖譜....... ................ ........ 155
圖5-18 D18C不同添加量改質土壤之SAXS圖譜....... ................ ........ 155
圖5-19 不同HCl添加量改質土壤之SAXS圖譜....... ................ .......... 158
圖5-20 不同反應時間改質土壤之SAXS圖譜....... ................ ... . .......... 159
圖5-21 不同反應溫度改質土壤之SAXS圖譜....... ................ ... . ......... 161
圖5-22 改質土壤對Cu2+吸附之Freundlich等溫吸附曲線. ....... . .......... 163
圖5-23 改質土壤對Cu2+吸附之Langmuir 等溫吸附曲線. ....... . .......... 164
圖5-24 改質土壤對Zn2+吸附之Freundlich 等溫吸附曲線. ....... . ........ 166
圖5-25 改質土壤對Zn2+吸附之Langmuir 等溫吸附曲線. ....... . ......... 166
圖5-26 改質土壤對BTEX之等溫吸附曲線....... ................ ... . ....... . ... 170
圖5-27 不同改質土壤對Benzene之等溫吸附線圖....... ................ ....... 173
圖5-28 不同改質土壤對Toluene之等溫吸附線圖....... ................ ........ 174
圖5-29 不同改質土壤對Ethylbenzene之等溫吸附線圖....... ................ 174
圖5-30 不同改質土壤對p-Xylene之等溫吸附線圖....... ................ ...... 175
圖5-31 改質劑DTDAC不同添加比例對BTEX之等溫吸附線圖. ........ 176
圖5-32 改質劑BZLT不同添加比例對BTEX之等溫吸附線圖. .......... 177
圖5-33 改質劑D18C不同添加比例對BTEX之等溫吸附線圖. .......... 177
圖6-1 團聯共聚物MDA之GPC圖譜................. ....... ................ ....... 190
圖6-2 自行合成團聯共聚物之NMR分析示意圖....... ................ ....... 191
圖6-3 團聯共聚物M-A之NMR圖譜................. ....... ................ ....... 194
圖6-4 團聯共聚物M-D之NMR圖譜................. ....... ................ ....... 195
圖6-5 團聯共聚物MDA之NMR圖譜................. ....... ................ ....... 196
圖6-6 MMT之TEM圖像................. ....... ................ ....... . ....... . ........ 199
圖6-7 CTMAB+SSTA(PL)之TEM圖像................. ....... ................ ..... 200
圖6-8 AP-MT之TEM圖像................. ....... ................ ....... . ....... . ..... 202
圖6-9 AP-PL之TEM圖像................. ....... ................ ....... . ....... . ...... 203
圖6-10 MDA-MT之TEM圖像................. ....... ................ ....... . ........... 204
圖6-11 MDA-PL之TEM圖像................. ....... ................ ....... . ........... 205
圖6-12 MMT之XRD圖譜................. ....... ................ ....... 208
圖6-13 CTMAB+SSTA之XRD圖譜................. ....... ................ ........... 208
圖6-14 MDA-MT之XRD圖譜................. ....... ................ ....... . .......... 208
圖6-15 AP-MT之XRD圖譜................. ....... ................ ....... . ....... . ..... 208
圖6-16 MDA-PL之XRD圖譜................. ....... ................ ....... . ....... . ... 208
圖6-17 AP-PL之XRD圖譜................. ....... ................ ....... . ....... . ....... 208
圖6-18 MDA-MT於不同pH值吸附Zn2+之吸附平衡曲線. ....... . ....... 210
圖6-19 對Cu2+吸附之Freundlich等溫吸附曲線....... ................ ... . ....... 212
圖6-20 對Cu2+吸附之Langmuir 等溫吸附曲線....... ................ ... . ....... 212
圖6-21 對Zn2+吸附之Freundlich等溫吸附曲線....... ................ ... . ....... 213
圖6-22 對Zn2+吸附之Langmuir 等溫吸附曲線....... ................ ... . ....... 213
圖6-23 在不同pH值Cr(VI)之形式................. ....... ................ ....... . ..... 216
圖6-24 MDA-MT之Cr2O72-吸附平衡曲線................. ....... ................ .. 217
圖6-25 AP-MT之Cr2O72-吸附平衡曲線................. ....... ................ ....... 218
圖6-26 改質土壤對Cr2O72-吸附之Freundlich等溫吸附曲線(pH3) . ..... 219
圖6-27 改質土壤對Cr2O72-吸附之Langmuir等溫吸附曲線(pH3) . ..... 219
圖6-28 MDA-MT改質土壤對BTEX之等溫吸附曲線....... ................ . 223
圖6-29 AP-MT改質土壤對BTEX之等溫吸附曲線....... ................ ..... 224
圖6-30 MDA-PL改質土壤對BTEX之等溫吸附曲線....... ................ ... 224
圖6-31 AP-CS改質土壤對BTEX之等溫吸附曲線....... ................ ..... 225
圖6-32 不同改質土壤對Benzene之等溫吸附線圖....... ................ ....... 227
圖6-33 不同改質土壤對Toluene之等溫吸附線圖....... ................ ........ 227
圖6-34 不同改質土壤對Ethylbenzene之等溫吸附線圖....... ................ 228
圖6-35 不同改質土壤對p-Xylene之等溫吸附線圖....... ................ ....... 228



















表目錄
目次 頁次
表2-1 分佈作用與吸附作用之比較................. ....... ................ ............ 19
表2-2 於25℃下離子之結晶半徑................. ....... ................ ....... . ....... 44
表3-1 不同波數下有機官能基................. ....... ................ ....... . ........... 68
表3-2 火焰式原子吸收光譜儀操作參數................. ....... ................ ..... 70
表3-3 SWy-2 鈉蒙特石物理性質表................. ....... ................ ....... . .. 70
表3-4 BETX基本性質表................. ....... ................ ....... . ....... . .......... 71
表3-5 具特殊功能之改質劑性質表................. ....... ................ ....... . ... 72
表3-6 重金屬標準品基本性質表................. ....... ................ ....... . ....... 75
表3-7 使用溶劑之基本性質表................. ....... ................ ....... . ........... 75
表3-8 團聯共聚物之單體基本性質................. ....... ................ ............. 76
表3-9 市售之團聯共聚物基本性質表................. ....... ................ ......... 77
表4-1 含碳鏈(小於C16)及特殊官能基之改質劑................. ....... ......... 87
表4-2 多胺類長烷基鏈(大於C16)之改質劑................. ....... ................ 88
表4-3 帶有Si-O基及特殊官能基之改質劑................. ....... ................ 88
表4-4 第四章實驗代號一覽表(蒙特土:改質劑=1:1) ....... ................ ... 89
表4-5 改質土壤元素重量百分比................. ....... ................ ....... . ....... 98
表4-6 改質土壤比表面積與平均孔徑性質表....... ................ ... . ......... 104
表4-7 吸附參數及CEC計算參數................. ....... ................ ....... . ....... 110
表4-8 陽離子交換法改質土壤之Langmuir isotherm 吸附參數. .......... 113
表4-9 不同改質方法之Langmuir isotherm 吸附參數. ....... . ....... . ..... 117
表4-10 改質土壤之飽和吸附量與文獻之比較. ....... . ....... . ....... . ........ 118
表4-11 改質土壤之有機碳含量................. ....... ................ ....... . ........... 120
表4-12 BTEX於不同改質土壤之分佈常數彙整表....... ................ ........ 124
表4-13 BTEX於不同方法改質土壤之分佈常數彙整表. ....... . ....... . ... 131
表4-14 BTEX 於改質土壤之有機碳分佈常數(Koc)....... ................ ... 133
表4-15 BTEX 於改質土壤之有機質分佈常數(Kom)....... ................ ... 134
表4-16 BTEX 於改質土壤之log Koc................. ....... ................ ............. 135
表4-17 BTEX 於改質土壤之log Kom................. ....... ................ ........... 136
表4-18 改質土壤之吸持參數與文獻比較................. ....... ................ ..... 138
表5-1 不同改質劑之結構................. ....... ................ ....... . ....... . ......... 141
表5-2 第五章實驗代號一覽表(陽離子改質法) ....... ................ ... . ...... 142
表5-3 改質土壤比表面積與平均孔徑性質表....... ................ ... . ......... 148
表5-4 不同改質土壤之SAXS分析結果................. ....... ................ ..... 152
表5-5 不同添加比例改質土壤之SAXS分析結果....... ................ ....... 156
表5-6 不同添加比例改質土壤之SAXS分析結果....... ................ ........ 158
表5-7 不同反應時間改質土壤之SAXS分析結果....... ................ ....... 160
表5-8 不同反應溫度改質土壤之SAXS分析結果....... ................ ........ 161
表5-9 改質土壤吸附Cu2+之Langmuir isotherm 吸附參數. ....... . ....... 164
表5-10 改質土壤吸附Zn2+之Langmuir isotherm 吸附參數. ....... . ....... 167
表5-11 改質土壤之有機碳含量................. ....... ................ ....... . ........... 169
表5-12 BTEX於不同改質土壤之分佈常數彙整表....... ................ ....... 172
表5-13 BTEX 於改質土壤之有機碳分佈常數(Koc)....... ................ ... 180
表5-14 BTEX 於改質土壤之有機質分佈常數(Kom)....... ................ ... 181
表5-15 BTEX 於改質土壤之log Koc................. ....... ................ ............. 182
表5-16 BTEX 於改質土壤之log KOm................. ....... ................ .............. 183
表6-1 不同三團聯共聚物之結構................. ....... ................ ....... . ....... 187
表6-2 第六章實驗代號一覽表................. ....... ................ ....... . ........... 187
表6-3 團聯共聚物MDA的分子量與分子量分佈....... ................ ........ 190
表6-4 團聯共聚物之NMR分析數據................. ....... ................ .......... 192
表6-5 MXDYAZ之NMR計算參數................. ....... ................ ....... . ..... 197
表6-6 小角度X-ray繞射分析結果................. ....... ................ .............. 207
表6-7 改質土壤對重金屬之Langmuir isotherm 吸附參數. ....... . ....... 214
表6-8 改質土壤之Langmuir isotherm 吸附參數與文獻比較. ....... . ... 215
表6-9 改質土壤對Cr2O72-之Langmuir isotherm 吸附參數. ....... . ....... 220
表6-10 改質土壤之Langmuir isotherm 吸附參數與文獻比較. ............. 221
表6-11 改質土壤的有機碳含量................. ....... ................ ....... . ........... 222
表6-12 BTEX於不同改質土壤之分佈常數彙整表....... ................ ........ 225
表6-13 BTEX 於改質土壤之log Koc................. ....... ................ ............. 229
表6-14 BTEX 於改質土壤之log Kom................. ....... ................ ............ 230
表6-15 改質土壤之吸持參數與文獻比較................. ....... ................ ..... 231

參考文獻 1. Boyd, S., Lee, J. and Mortland, M. Attenuating organic contaminant mobility by soil modification. Nature. 333, 6171 (1988), 345-347.
2. Bordes, Perrine, Eric Pollet, and Luc Averous. Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science 34.2 (2009), 125-155.
3. Pennell, K., Abriola, L. and Boyd, S. Surface Area of Soil Organic Matter Reexamined. Soil Science Society of America Journal. 59, 4 (1995), 1012.
4. Gu, T., B-Y. Zhu, and H. Rupprecht. Surfactant adsorption and surface micellization. Advances in Colloid Structures. Steinkopff, (1992), 74-85.
5. Theng, Benny Kian Goan. Formation and properties of clay-polymer complexes. Vol. 4. Elsevier, (2012).
6. Tsai, T., Lin, M., Chuang, Y. and Chou, P. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites. Materials Chemistry and Physics. 138, 1 (2013), 230-237.
7. 徐明宏,界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估,中央大學博士學位論文 (2004).
8. Lambert, S. Functional relation between sorption in soil and chemical structure. Journal of Agricultural and Food Chemistry. 15, 4 (1967), 572-576.
9. Chiou, Cary T., Louis J. Peters, and Virgil H. Freed. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206.4420 (1979), 831-832.
10. Chiou, C., Porter, P. and Schmedding, D. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology. 17, 4 (1983), 227-231.
11. Chiou, C., Shoup, T. and Porter, P. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Organic Geochemistry. 8, 1 (1985), 9-14.
12. Chiou, Cary T. Partition and adsorption of organic contaminants in environmental systems. John Wiley & Sons, (2003).
13. Bates, F., Hillmyer, M., Lodge, T., Bates, C., Delaney, K. and Fredrickson, G. Multiblock Polymers: Panacea or Pandora′s Box?. Science. 336, 6080 (2012), 434-440.
14. He, W. and Xu, J. 2012. Crystallization assisted self-assembly of semicrystalline block copolymers. Progress in Polymer Science. 37, 10 (2012), 1350-1400.
15. Lian, X., Zhao, F., Li, Y., Wang, J., Li, S. and Zhao, H. Photophysical properties and self-assembly of triblock copolymer with complexes of positively charged PDMAEMA and oppositely charged chromophores. Polymer. 53, 9 (2012), 1906-1914.
16. Park, C., Yoon, J. and Thomas, E. Enabling nanotechnology with self assembled block copolymer patterns. Polymer. 44, 22 (2003), 6725-6760.
17. Forster, S. and Antonietti, M. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. Advanced Materials. 10, 3 (1998), 195-217.
18. Odian, George. Principles of polymerization. John Wiley & Sons, (2004).
19. Georges, M., Veregin, R., Kazmaier, P. and Hamer, G. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules. 26, 11 (1993), 2987-2988.
20. Chen, Y., Juang, T., Wu, T., Dai, S., Kuo, W., Liu, Y., Chen, F. and Jeng, R. Orderly Arranged NLO Materials Based on Chromophore-Containing Dendrons on Exfoliated Layered Templates. ACS Applied Materials & Interfaces. 1, 10 (2009), 2371-2381.
21. Barrer, R. and MacLeod, D. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society. 51, (1955), 1290.
22. Sogah, D., Hertler, W., Webster, O. and Cohen, G. Group transfer polymerization - polymerization of acrylic monomers. Macromolecules. 20, 7 (1987), 1473-1488.
23. 林明賢,甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究,中央大學博士學位論文. (2000)
24. Chiefari, J., Chong, Y., Ercole, F., Krstina, J., Jeffery, J., Le, T., Mayadunne, R., Meijs, G., Moad, C., Moad, G., Rizzardo, E. and Thang, S. Living Free-Radical Polymerization by Reversible Addition?Fragmentation Chain Transfer: The RAFT Process. Macromolecules. 31, 16 (1998), 5559-5562.
25. Liu, Y., Li, J., Ren, J., Lin, C. and Leng, J. Preparation and in vitro pH-responsive drug release of amphiphilic dendritic star-block copolymer complex micelles. Materials Letters. 127, (2014), 8-11.
26. Bian, Q., Xiao, Y., Zhou, C. and Lang, M. Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer. Journal of Colloid and Interface Science. 392, (2013), 141-150.
27. Rungswang, W., Kotaki, M., Shimojima, T., Kimura, G., Sakurai, S. and Chirachanchai, S. Role of surfactant on inducing specific microdomains of block copolymer: An example case from polystyrene-b-poly(ethylene-co-1-butene)-b-polystyrene (SEBS) electrospun thermoplastic-elastomer fiber containing polyethylene glycol lauryl ether (PGLE). Polymer. 55, 8 (2014), 2068-2076.
28. Utsel, S., Carlmark, A., Pettersson, T., Bergstrom, M., Malmstrom, E. and Wagberg, L. Synthesis, adsorption and adhesive properties of a cationic amphiphilic block copolymer for use as compatibilizer in composites. European Polymer Journal. 48, 7 (2012), 1195-1204.
29. Batrakova, E. and Kabanov, A. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release. 130, 2 (2008), 98-106.
30. Lokaj, J., Vlc?ek, P. and K?i?, J. Synthesis of Polystyrene?Poly(2-(dimethylamino)ethyl methacrylate) Block Copolymers by Stable Free-Radical Polymerization. Macromolecules. 30, 24 (1997), 7644-7646.
31. Wang, J., Li, F., Li, Q., Sun, J. and Chen, G. RETRACTED: Polystyrene-b-poly(ethylene oxide) block copolymer thin films as templates for carbon nanotube dispersion. Thin Solid Films. 536, (2013), 191-195.
32. Feng, J., Sun, B., Yao, Y. and Che, S. Silicone surfactant templated mesoporous silica. Microporous and Mesoporous Materials. 172, (2013), 30-35.
33. Xiao, N., Li, D., Cui, G., Li, N., Li, Q. and Wu, G. Adsorption behavior of triblock copolymer suppressors during the copper electrodeposition. Electrochimica Acta. 116, (2014), 284-291.
34. Pavlidou, S. and Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Progress in Polymer Science. 33, 12 (2008), 1119-1198.
35. Sinha Ray, S. and Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science. 28, 11 (2003), 1539-1641.
36. Alexandre, M. and Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports. 28, 1-2 (2000), 1-63.
37. Ho, D. and Glinka, C. Effects of Solvent Solubility Parameters on Organoclay Dispersions. Chemistry of Materials. 15, 6 (2003), 1309-1312.
38. Choi, Y., Ham, H. and Chung, I. Effect of Monomers on the Basal Spacing of Sodium Montmorillonite and the Structures of Polymer?Clay Nanocomposites. Chemistry of Materials. 16, 13 (2004), 2522-2529.
39. Vaia, R., Teukolsky, R. and Giannelis, E. Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates. Chemistry of Materials. 6, 7 (1994), 1017-1022.
40. Chen, Y., Juang, T., Wu, T., Dai, S., Kuo, W., Liu, Y., Chen, F. and Jeng, R. Orderly Arranged NLO Materials Based on Chromophore-Containing Dendrons on Exfoliated Layered Templates. ACS Applied Materials & Interfaces. 1, 10 (2009), 2371-2381.
41. Barrer, R. and MacLeod, D. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society. 51, (1955), 1290.
42. Vaia, R. and Giannelis, E. Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules. 30, 25 (1997), 8000-8009.
43. Bhattacharyya, K. and Sen Gupta, S. Adsorption of Chromium(VI) from Water by Clays. Industrial & Engineering Chemistry Research. 45, 21 (2006), 7232-7240.
44. Brindley, G. Preparation and Properties of Some Hydroxy-Aluminium Beidellites. Clay Minerals. 12, 3 (1977), 229-237.
45. Gil, A., Korili, S. A., Trujillano, R., & Vicente, M. A., eds. Pillared clays and related catalysts. New York, NY: Springer, (2010).
46. Sparks, Donald L. Environmental soil chemistry. Academic press, (2003).
47. 黃怡禎. "礦物學." 地球科學文教基金會, (2000).
48. G?adysz-P?aska, A., Majdan, M., Pikus, S. and Sternik, D. Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chemical Engineering Journal. 179, (2012), 140-150.
49. Huang, Y., Ma, X., Liang, G., Yan, Y. and Wang, S. Adsorption behavior of Cr(VI) on organic-modified rectorite. Chemical Engineering Journal. 138, 1-3 (2008), 187-193.
50. Liu, J., Feng, X., Fryxell, G., Wang, L., Kim, A. and Gong, M. Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials. 10, 2 (1998), 161-165.
51. Lim, M. and Stein, A. Comparative Studies of Grafting and Direct Syntheses of Inorganic?Organic Hybrid Mesoporous Materials. Chemistry of Materials. 11, 11 (1999), 3285-3295.
52. Guimaraes, Angela de Mello Ferreira, Virginia Sampaio T. Ciminelli, and Wander Luiz Vasconcelos. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions. Applied Clay Science 42.3 (2009), 410-414.
53. 張欽超,聚甲基丙烯酸甲酯/黏土奈米複材之製備與研究,成功大學碩士學位論文 (2005).
54. Bergaya, Faiza, and Gerhard Lagaly. General introduction: clays, clay minerals, and clay science. Developments in clay science 1 (2006), 1-18.
55. Giannelis, Emmanuel P., Romanan Krishnamoorti, and E. Manias. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Polymers in confined environments. Springer Berlin Heidelberg, (1999), 107-147.
56. Chiu, C. and Lin, J. Self-assembly behavior of polymer-assisted clays. Progress in Polymer Science. 37, 3 (2012), 406-444.
57. Pavlidou, S. and Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Progress in Polymer Science. 33, 12 (2008), 1119-1198.
58. Tai, Q., Yuen, R., Song, L. and Hu, Y. A novel polymeric flame retardant and exfoliated clay nanocomposites: Preparation and properties. Chemical Engineering Journal. 183, (2012), 542-549.
59. Beltran, M., Benavente, V., Marchante, V., Dema, H. and Marcilla, A. Characterisation of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios. Properties of these modified montmorillonites EVA nanocomposites. Applied Clay Science. 97-98, (2014), 43-52.
60. Jain, S. and Datta, M. Montmorillonite-PLGA nanocomposites as an oral extended drug delivery vehicle for venlafaxine hydrochloride. Applied Clay Science. 99, (2014), 42-47.
61. Zhou, K., Zhang, Q., Wang, B., Liu, J., Wen, P., Gui, Z. and Hu, Y. The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. Journal of Cleaner Production. 81, (2014), 281-289.
62. Silverstein, Robert M., Spectrometric identification of organic compounds. John wiley & sons, (2014).
63. Stevenson, Frank J. Humus chemistry: genesis, composition, reactions. John Wiley & Sons, (1994).
64. Koch, E. Acid-Base Interactions in Energetic Materials: I. The Hard and Soft Acids and Bases (HSAB) Principle-Insights to Reactivity and Sensitivity of Energetic Materials. Propellants, Explosives, Pyrotechnics. 30, 1 (2005), 5-16.
65. Erdem, E., Karapinar, N. and Donat, R. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science. 280, 2 (2004), 309-314.
66. Pranata Putra, W., Kamari, A., Najiah Mohd Yusoff, S., Fauziah Ishak, C., Mohamed, A., Hashim, N. and Md Isa, I. Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies. Journal of Encapsulation and Adsorption Sciences. 04, 01 (2014), 25-35.
67. Faur-Brasquet, C., Kadirvelu, K. and Le Cloirec, P. Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon. 40, 13 (2002), 2387-2392.
68. Rutherford, D., Chiou, C. and Kile, D. Influence of soil organic matter composition on the partition of organic compounds. Environmental Science & Technology. 26, 2 (1992), 336-340.
69. Chiou, C., Porter, P. and Schmedding, D. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology. 17, 4 (1983), 227-231.
70. Lee, J., Crum, J. and Boyd, S. Enhanced retention of organic contaminants by soils exchanged with organic cations. Environmental Science & Technology. 23, 11 (1989), 1365-1372.
71. Santos, V., Salvado, A., Dragunski, D., Peraro, D., Tarley, C. and Caetano, J. Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. Quimica Nova. 35, 8 (2012), 1606-1611.
72. Ouki, S. and Neufeld, R. Use of activated carbon for the recovery of chromium from industrial wastewaters. Journal of Chemical Technology & Biotechnology. 70, 1 (1997), 3-8.
73. Benhamou, A., Basly, J., Baudu, M., Derriche, Z. and Hamacha, R. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate. Journal of Colloid and Interface Science. 404, (2013), 135-139.
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2017-4-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明