台灣聯合大學系統 106 學年度碩士班招生考試試題

類組:電機類 科目:訊號與系統(300B)

共3頁第1頁

※請在答案卷內作答

-- \(\(\frac{5}{\pi}\)\) The I-O relation of a CT system is $y(t) = e^{-t}x(t), t > 0$. Determine whether the system is (a) memoryless, (b) stable, (c) causal, (d) linear, and (e) time invariant.

二、(10%)

(a) (5%) The impulse response of an LTI system is $h(t) = \begin{cases} \cos(\pi t), |t| < 0.5 \\ 0, \text{ otherwise} \end{cases}$. Use linearity and time

invariance to determine and plot the output y(t) for $x(t) = \delta(t+1) - \delta(t-1)$.

(b) (5%) Evaluate the convolution sum: y[n] = (u[n+3] - u[n-1]) * u[n-4].

三、(15%)

- (a) (10%) Find the frequency response (5%) and impulse response (5%) of the discrete-time system described by 8y[n] 2y[n-1] y[n-2] = x[n] + x[n-1].
- (b) (5%) Draw direct form II implementation of the system in (a).

四、(10%)

Find the time domain signal x(t) corresponding to the following Fourier Transform representations (a) (4%) X(j ω) = $4\pi\delta(\omega - 3\pi) + 2j\pi\delta(\omega - 5\pi) + 4\pi\delta(\omega + 3\pi) - 2j\pi\delta(\omega + 5\pi)$

(b) (6%)
$$X(j\omega) = \sum_{k=0}^{6} \frac{\pi}{1+|k|} \left\{ \delta\left(\omega - \frac{k\pi}{2}\right) + \delta(\omega + \frac{k\pi}{2}) \right\}$$

五、(20%)

A periodic signal has the Fourier Series (FS) representation

 $x(t) \stackrel{FS;\pi}{\longleftrightarrow} X[k] = -k2^{-|k|}$. Without determining x(t), find the FS representation (Y[k] and ω_0) if

(a)
$$(2\%)$$
 $y(t) = x(3t)$

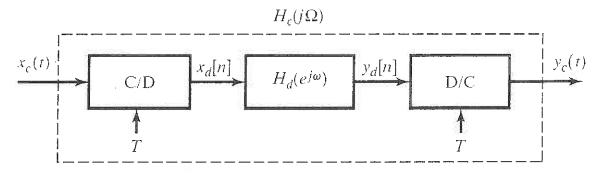
(b) (2%)
$$y(t) = \frac{d}{dt}x(t)$$

(c)
$$(2\%)$$
 $x(t) = x(t-1)$

(d) (2%)
$$y(t) = \text{Re}\{x(t)\}$$

(e) (6%)
$$y(t) = cos(4\pi t) x(t)$$

(f) (6%)
$$y(t) = x(t) * x(t-1)$$
 [* stands for convolution]


六、(10%)

The system shown below is intended to approximate a differentiator for bandlimited continuous-time input waveforms.

類組:電機類 科目:訊號與系統(300B)

共马頁第之頁

※請在答案卷內作答

- The continuous-time input signal $x_c(t)$ is bandlimited to $|\Omega| < \Omega_M$.
- The ideal C/D converter has sampling period $T = \pi/\Omega_M$, and produce the signal $x_d[n] = x_c(nT)$.
- The discrete-time filter has the frequency response $H_d(e^{j\omega}) = \frac{e^{j\omega/2} e^{-j\omega/2}}{T}$, $|\omega| \le \pi$.
- The ideal D/C converter is such that $y_d[n] = y_c(nT)$.
- (a) (4%) Find the continuous-time frequency response $H_c(j\Omega)$ of the end-to-end system.
- (b) (6%) Find $x_d[n]$, $y_c(t)$, and $y_d[n]$ when the input signal is $x_c(t) = \frac{\sin(\Omega_M t)}{\Omega_M t}$.

七、(5%)

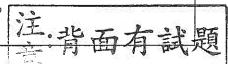
A BIBO stable system has a transfer function $H(s) = \frac{s(s-1)}{(s+2)(s+a)}$, which has a partial fraction expansion:

 $H(s) = A + \frac{B}{s+2} + \frac{C}{s+a}$. If $a \ne 2$ and B = 1.5, then put the correct answers in the following blanks.

(a) (3%)
$$a = _____, A = _____, C = ______$$

(b) (2%) The ROC (region of convergence) of the transfer function H(s) is _____

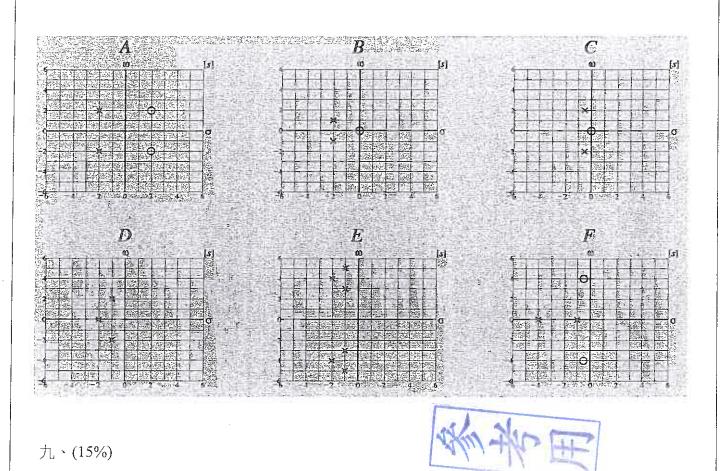
八、(10%)



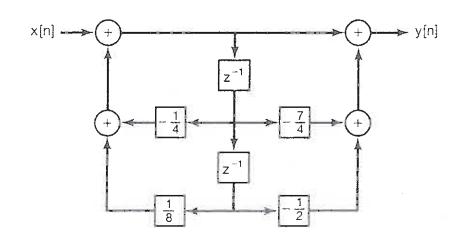
The following figure shows some pole-zero plots of transfer functions of systems of the general form:

 $H(s) = A \frac{(s-z_1)\cdots(s-z_N)}{(s-p_1)\cdots(s-p_D)}$, where A=1, z_i 's are the zeros, and p_i 's are the poles. Answer the following

questions.


- (a) (2%) Which one(s) have a magnitude frequency response that is nonzero at $\omega = 0$?
- (b) (2%) Which one(s) have a magnitude frequency response that is nonzero at $\omega \to \infty$?
- (c) (2%) There are two that have a bandpass frequency response (zero at $\omega = 0$ and $\omega \to \infty$). Which one is more underdamped?
- (d) (2%) Which one has a magnitude frequency response whose shape is closest to being a bandstop filter?
- (e) (2%) Which one has a magnitude frequency response that is constant?

類組:電機類 科目:訊號與系統(300B)


共<u>3</u>頁第<u>3</u>頁

X請在答案卷內作答

A causal LTI system with system function H(z) is represented by the following block diagram.

- (a) (3%) Determine the system function H(z).
- (b) (3%) Give a linear constant coefficient difference equation describing the system.
- (c) (3%) What is the region of convergence of H(z)?
- (d) (4%) Find the impulse response of the system.
- (e) (2%) Is the system stable?

