博碩士論文 90242007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.221.85.33
姓名 張志仰(Chih-Yang Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 單一氮化物奈米線的電性傳輸特性
(Electrical Transport Properties of Single III-Nitride Nanowire)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在研究單一氮化鎵 (GaN)及氮化銦 (InN)之奈米線電性傳輸特性。首先,將單一GaN奈米線元件以700~800oC熱處理之後,因為奈米線的表面對體積比很大,所以,表面的清潔處理將會大大影響所量測到電性的結果。我們利用紫外線臭氧清洗機(UV/Ozone)來輔助研究n型GaN奈米線表面的清潔。利用歐傑電子能譜(Auger electron spectroscopy)來量測一系列1-30分鐘不同的GaN 表面清潔的樣品,並發現此方法可以大大降低GaN表面的碳及氧的含量,但是,過度的長時間使用UV/Ozone處理將會有氧化物在奈米線的表面形成,使清潔目的得到反效果。將單一GaN奈米線元件熱處理及表面清潔之後,可製作不同奈米線長度的電元件,從奈米線的總電阻中減去兩端歐姆接觸電阻,可得知奈米線電阻率從71 Ω cm大大地降到0.7 Ω cm,電性特性的改善足足有兩個數量級之好。第二部分將介紹一種簡單地、低成本地單一根奈米線場效電晶體元件的製作方法,此元件基板為鍍上300 nm的氮化矽絕緣層的矽基板,此奈米線場效電晶體在700 oC 氮氣下熱處理之後,呈現n型的導電特質,載子濃度約2x1017 cm-3 ,飄移率約30 cm2/V s。更進一步地,從變溫電阻的結果曲線來看符合微擾穿隧效應將主導此元件的在接觸電極與半導體奈米線之間的傳輸。第三部分為介紹量測InN 奈米線電性特性,此InN奈米線亦由金催化劑利用熱化學氣相沉積法所核成,為了匹配功函數(work function) ,使用的四層接觸金屬分別為釟/鈦/鉑/金(Pd/Ti/Pt/Au) 這四種歐姆接觸金屬(ohmic contact metal),我們使用傳輸線理論模型(transmission line method; TLM) 去求得奈米線與接觸金屬的特殊接觸電阻率(specific contact resistivity)為1.09 x 10-7 Ω cm2,接著可計算出直徑大於100 nm的InN奈米線本質電阻率為4x10-4 Ω cm,然而,直徑小於100 nm的InN奈米線在TLM模型下總電阻對長度/奈米線半徑的平方做圖呈現出反常非線性高斯遞減行為,違反歐姆定律,猜測是由於小尺度效應的影響所造成,若把電阻的貢獻看成是由每個散射中心所造成,使得電阻率與長度和截面積呈現正相關。接著量測電阻隨溫度的變化所得到一個正相關溫度係數,這告訴我們InN奈米線呈現出金屬的特性。
摘要(英) In this dissertation, the electrical transport properties studies on single GaN and InN nanowires were studied. First, we report studies on the effect of UV/ozone cleaning on n-type GaN nanowires. The UV/ozone cleaning for periods of 1-5 min reduced surface carbon and oxygen contamination, as determined by Auger electron spectroscopy measurements and led to a specific contact resistivity of 1.8x 10-2 Ω cm2 after annealing in the range 700-800 oC. After subtraction of this contact resistivity from the total resistance of the nanowire, it was found that the ozone treatment reduced the apparent resistivity from 71 to 0.7 Ω cm. Second, a simple fabrication process for single GaN nanowire field effect transistor on Si substrate was demonstrated. The as-grown GaN nanowires exhibited n-type conductivity (n~2x1017 cm-3, mobility of 30 cm2/Vs) after annealing at 700 oC. From the temperature-dependence resistance behavior, the transport was dominated by tunneling in these annealed nanowires. Third, the transport properties of single InN nanowires grown by thermal catalytic chemical vapor deposition were measured as a function of both length/square of radius ratio and temperature. The resistivity of the n-type InN nanowires with diameter>100 nm was measure by the transmission line method and the value was on the order of 4x10-4 Ω cm and specific contact resistivity for unalloyed Pd/Ti/Pt/Au ohmic contacts was near 1.09x10-7 Ω cm2. For InN nanowires with diameter <100nm, the total resistance did not increase linearly with length/square of radius ratio but decreased exponentially, presumably due to more pronounced surface effect. The usual Ohm’s law will fail in small nanowires in the diffusive regime when the wire radius is comparable with electron de Broglie’s wavelength or the scatter potential range. The temperature dependence of resistance showed a positive temperature coefficient and a functional form characteristic of metallic conduction in the InN nanowires.
關鍵字(中) ★ 奈米線
★ 電性傳輸
★ 氮化鎵
★ 氮化銦
關鍵字(英) ★ GaN
★ nanowire
★ electrical transport
★ ZnO
★ InN
論文目次 Page
Abstract in Chinese i
Abstract in English iii
Acknowledgements v
List of Tables vii
List of Figures viii
Chapter
1. Introduction…………………………………………………………………..1
2. III-NitrideNanowiresgrowthmodel...............................................…..5
3. Effect of UV O-zone cleaning and annealing on GaN nanowires.........15
4. Electrical transport properties of single GaN nanowires
field-effect transistors…………………....………………………….…….30
5. Transport properties of InN nanowires ………………………..…………49
6. Conclusion……………….…………………………………….…………....65
APPENDIX…………………………………………………………………......71
參考文獻 1. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (2001).
2. B. F. Erlanger, B. X. Chen, M. Zhu and L. Brus, Nano Lett. 1, 465 (2002).
3. X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001).
4. G. Y. Tseng and J. C. Ellenbogen, Science 294, 1293 (2001).
5. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294, 1313 (2001).
6. C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen, Y. F. Chen, R. Collazo and Z. Sitar, Phys. Rev. B 68, 125322 (2003).
7. T. H. Yang, C. H. Chen, A. Chatterjee, H. Y. Li, J. T. Lo, C. T. Wu, K. H. Chen and L. C. Chen, Chem. Phys. Lett. 379, 155 (2003).
8. Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen,Y. F. Chen and L. C. Chen, J. Cryst. Growth 269, 87 (2004).
9. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294, 1317 (2001).
10. Y. Cui and C. M. Lieber, Science 291, 851 (2001).
11. J. Y. Yu, S. W. Chung and J. R. Heath, J. Phys. Chem. B 104, 11864 (2000).
12. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
13. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, Nat. Mater. 1, 106 (2002).
14. J. Y. Lao, J. G. Wen and Z. F. Ren, Nano Lett. 2, 1287 (2002).
15. F. G. Tarntair, C. Y. Wen, L. C. Chen, J.-J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Cheng, Appl. Phys. Lett. 76, 2630 (2000).
16. X. F. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, l88 (2000).
17. X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wand, Z. Zhang and Z. Qiao, Adv. Mater. 12, 1432 (2000).
18. C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
19. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
20. Jae-Ryoung Kim, Hye Mi So, Jong Wan Park, Ju-Jin Kim, Jinhee Kim, Cheol Jin Lee and Seung Chul Lyu, Appl. Phys. Lett. 80, 3548 (2002).
21. L. C. Chen, K. H. Chen and C. C. Chen, Group III- and Group IV- Nitride Nanorods and Nanowires, Chapter 9, pp. 257-309, in Z. L. Wang, Ed., Nanowires and Nanobelts − Materials, Properties and Devices, Vol. 1: Metal and Semiconductor Nanowires, Kluwer Academic Publisher (2003).
22. Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen and C. C. Chen, Adv. Func. Mater. 14, 233 (2004).
23. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. S. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Pong and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).
24. S. Dhara, A. Datta, C. W. Hsu, C. T. Wu, C. H. Shen, Z. H. Lan, K. H. Chen, L. C. Chen, Y. L. Wang and C. C. Chen, Appl. Phys. Lett. 84, 5473 (2004).
25. O. Briot, B. Maleyre, S. Ruffenach, C. Pinquier, F. Demangeot and Jean Frandon, Phys. Stat. Sol. (c) 7, 2851 (2003).
26. E. Dimakis, G. Konstantinidis, K. Tsagaraki, A. Adikimenakis, E. Iliopoulos, A. Georgakilas, Superlattices and Microstructures 36, 497 (2004).
27. Tao Tang, Song Han, Wu Jin, Xiaolei Liu, Chao Li, Daihua Zhang, Chongwu Zhou, Bin Chen, Jie Han and M. Meyyapan, J. Materials Res. 19, 423 (2004).
28. S. J. Pearton, J. C. Zolper, F. Ren and R. J. Shul, J. Appl. Phys. 86, 1 (1999).
29. D. K. Schroder, Semiconductor material and device characterization, Wiley and Sons, NY (1990).
30. C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren and S. J. Pearton, Journal of Electronic Materials 35, 738-748 (2006).
31. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamazaki, S. Nagai, J. Umezaki, M. Koike and M. Murakami, J. Appl. Phys. 81, 1315 (1997).
32. K. K. Kim, K. J. Kim, B. Kim, J. N. Kim, J. S. Kwak, Y. J. Park and J.-L. Lee, J. Electron. Mater. 30, 129 (2005) and references therein.
指導教授 紀國鐘、林麗瓊、陳貴賢
(Gou-Chung Chi、Li-Chyong Chen、Kuei-Hsien Chen)
審核日期 2006-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明