以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:39 、訪客IP:3.12.71.235
姓名 王正宏(Chen-Hung Wang) 查詢紙本館藏 畢業系所 物理學系 論文名稱 二元高分子薄膜在平行電場下的相分離
(Phase separation ofum-thickness films of a binarypolymer melt under in-planeelectric fields)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 我們將PS 與PMMA 混合而成的薄膜放在平行薄膜的電場中來研究外場下的相分離(phase separation)。在實驗中發現,相分離會伴隨去潤濕性(dewetting)。在較弱的外場下,去潤濕的過程在相分離的後期會造成洞(dewetting hole)的形成。而在強電場下,這個過程會被抑制。跟早期只有單一組成的薄膜實驗來比,經由相分離形成的洞,其成長速率在洞剛形成的初期是相符的,但是在後期是不同的。藉由光學顯微鏡及原子力顯微鏡(AFM)對相分離中的薄膜表面來做考察,我們給出了在不同電場下上述過程的動力學解釋。在強電場下,電場會破壞相異成分界面的穩定性(interface instability),從而使界面斷開,形成較小的不互連的相分離結構。我們認為在不同電場下,所呈現的不同的相分離過程,主要是由於,去潤濕性的不穩定性(instability of dewetting)及電場導致的界面不穩定性的競爭造成的。在這個實驗中,我們量測了洞的成長率,相分離結構大小隨時間及電場的變化,以期和單純的相分離及去潤濕性的實驗來比較。 摘要(英) Polymer blends of PS and PMMA are used to study the time evolution of um-thickness film phase separation of binary fluid mixtures under applied in-plane electric fields. It is found that the phase separation is accompanied by dewetting processes (PS dewet PMMA) at the later stage for weak fields, but the dewetting is suppressed while the electric field is increased. The growth rates of holes for binary
um-thickness films agree with the classical thin-film system at the early stage but distinct at the late stage. From the profiles of the dewetting domains and optical images of dewetting processes, we provide a dynamical picture of this dewetting process in this thesis. We also find that the electric field will break the spinodal decomposition structures during phase separation so domains become small, with the dewetting holes disappearing under strong fields. The competition between two
instabilities induced by the dewetting and electric field makes the phase separation
morphology different at weak and strong fields. The power laws of the growth rates of dewetting holes and domain sizes in final states are measured to compare with the normal phase separation and classical dewetting.關鍵字(中) ★ 相分離
★ 高分子聚合物
★ 去濕潤性
★ 旋轉塗佈關鍵字(英) ★ phase separation
★ phase trnsition
★ PS
★ PMMA
★ order
★ disorder
★ polymer
★ electric field
★ thin film
★ blend
★ dewetting
★ wetting
★ temperature control
★ hole
★ morphology
★ spin
★ casting論文目次 Contents
1 Introduction 1
2 Interface instabilities induced by electric fields and dewetting 9
2.1 Interface instability in fluids induced by an electric field . . . . . . . 9
2.2 Numerical simulation of phase separation in a binary fluid with an
external field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Velocity of dewetting holes . . . . . . . . . . . . . . . . . . . . . . . 16
3 Apparatus and experiment 18
3.1 Temperature control and electric field . . . . . . . . . . . . . . . . . 18
3.2 The Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Film thickness measurement . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Measurement of the dewetting holes and phase separation domains . 24
4 Result and Analysis 27
5 Conclusion 58參考文獻 Bibliography
[1] L. Sung, A. Karim, J.F. Douglas, and C.C. Han, Phys. Rev. Lett. 76, 4368
(1996).
[2] F. Bruder and R. Brenn, Phys. Rev. Lett. 69, 624 (1992).
[3] R. Seemann, S. Herminghaus, and K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).
[4] K.B. Glasner, and T.P. Witelski, Phy. Rev. E 67, 016302 (2003).
[5] J.D. Gunton, M.S. Miguel, and P.S. Sahni, in Phase Transitions and Critical
Phenomena, 8, edited by C. Domb and J.L. Lebowitz New York: Academic
Press (1983).
[6] P.C. Hohenberg, and B.I. Halperin, Rev. Mod. Phys. 49, 3 (1977).
[7] Andrew, Pierre Wiltzius, and Frank S. Bates and Je®rey H. Rosedale, Phys.
Rev. A 45, 885 (1992).
[8] Takeji Hashimoto, Jiro Kumaki, and Hiromichi Kawai, Macromolecules 16, 641,
(1983).
[9] E.D. Siggia, Phys. Rev. A 20, 595 (1970).
[10] Y. Wu et. al., Phys. Rev. B 44, 8247 (1991).
[11] Gregory Leptoukh, Bowe Strickland, and Christopher Roland, Phys. Rev. Lett.
74, 3636 (1995).
[12] M. San Miguel, M. Grant, and J.D. Gunton, Phys. Rev. A 31, 1001 (1985).
60
[13] Mark Harris, Guenter Appel, and Harald Ade, Macromolecules 36, 3307 (2003).
[14] A. Karim et. al. Macromolecules 31, 857(1998).
[15] Hiroshi Jinnai et. al. Macromolecules 34, 5186(2001).
[16] Hajime Tanaka and Takeaki Araki, Phys. Rev. Lett. 81, 389 (1998).
[17] A. Onuki, Physica A 217, 38 (1995).
[18] Wei-Jhang Luo and Chun-Yi Lu, M.S. Thesis, National Central University,
Taiwan, 2004.
[19] M.D. Johnson, X. Duan, Brett Riley, Aniket Bhattacharya, andWeili Luo, Phys.
Rev. E 69, 041501 (2004).
[20] Karl Amundson, Engene Helfand, and Xina Quan, Macromolecules 26,
2698(1993).
[21] P. Lambooy, K.C. Phelan, O. Haugg, and G. Keausch, Phys. Rev. Lett. 76, 1110
(1996).
[22] Zhiqun Lin, Tobias Kerle, Shenda M. Baker, David A. Hoagland, Erik SchÄo®er,
Ullrich Steiner, and Thomas P. Russell, J. Chem. Phy. 114, 2377 (2001).
[23] A. Vrij, Discuss, Faraday Soc. 42, 23 (1996).
[24] F. Brochard and J. Daillant, Can. J. Phys. 68, 1084 (1990).
[25] R.Xie, A. Karim, J.F. Douglas, C.C. Han, and R.A. Weiss, Phys. Rev. Lett. 81,
1251(1998).
[26] Zhiqun Lin, Tobias Herle, Thomas P. Russell, Erik Schoffer, and Ullrich Steiner,
Macromolecules 35, 6255 (2002).
[27] C. Redon, F. Brochard-Wyart, and F. Rondelez, Phys. Rev. Lett. 66, 715 (1991).
[28] Stefan Walheim et. al., Macromolecules 30, 4995 (1997).指導教授 陳培亮(Peilong Chen) 審核日期 2006-1-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare