博碩士論文 104322065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.144.230.158
姓名 林禹安(Yu-An Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 水面下圓柱體尾流之大渦流模擬
(Large Eddy Simulation of Circular Cylinder beneath the Water Surface)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 設計水面之下的跨河管線以及海底纜線時,必須考量水流之衝擊力,以避免管 線之損壞。本研究整合大渦流模式與 VOF 法探討水面下的圓柱體之尾流及圓柱體 受水流之衝擊力。模擬結果先與水槽實驗量測得之自由水面比較、驗證,以增加數 值模式的可信度。再利用數值模式針對圓形斷面之柱體進行一系列的模擬,檢視福 祿數、沉沒比、阻滯比等參數對圓柱體的阻力與升力之影響。數值模擬結果顯示: 因為水深限縮流場的關係,造成水流加速通過圓柱,使得水流施予圓柱的阻力係數 隨著阻滯比變大而增大。當福祿數 FrD = 0.45 時,水面沒有明顯地起伏地流過圓柱 上方;但當福祿數 FrD - 0.68 和沉沒比 h* = 0.75 時,圓柱上方的水面壅高,並在圓 柱後方發生水躍現象。研究結果亦發現:當沉沒比下降(圓柱接近水面)時,因為圓 柱上方受自由水面之影響,發生圓柱上下表面的動壓力不對稱的現象,導致圓柱受 到向上的升力。當圓柱沉沒比 h* > 2.0 時,圓柱表面的動壓分佈就不再受水面影響, 圓柱表面上下壓力對稱,升力係數趨於零。本研究之成果可應用在淹沒於水中管線 的結構設計。
摘要(英) The hydrodynamic loadings on the pipelines are essential parameters for pipeline design, especially when the pipelines are submerged in the river flow during flood events. This study focuses on the interaction between the free surface flow and a submerged cylinder with circular cross-section. This study integrates a Large Eddy Simulation (LES) model and the Volume of Fluid (VOF) method to examine the effect of free surface on the hydrodynamic loading of a submerged circular pipeline. The simulation results are verified by the results of flume experiments. Then the numerical model is utilized to investigate the influences of the Froude number, submergence ratio and blockage ratio on the flow field and the force coefficients of the circular cylinder. The simulation results reveal that the drag coefficient of the cylinder increases as the blockage ratio increases. When the Froude number FrD < 0.45, the water surface is smooth and undisturbed; when FrD > 0.68 and submergence ratio h* = 0.75, the water surface is elevated by the submerged cylinder and dropped behind the cylinder to create a forced jump. The simulation results indicate that the dynamic pressure on the upper side of the cylinder is affected by the water surface and the pressure distribution became asymmetric when the cylinder is very close to the water surface. This leads to the lift coefficient deviated from zero when the submergence ratio h*  2.0. The results of this study can be used for the structure design of submerged pipelines.
關鍵字(中) ★ 大渦模擬
★ 阻力係數
★ 升力係數
★ 沉沒比
★ 阻滯比
★ 福祿數
關鍵字(英) ★ Large Eddy Simulation
★ Drag coefficient
★ Lift coefficient
★ Submergence ratio
★ Blockage ratio
★ Froude number
論文目次
Abstract III
Content IV
Table Captions V
Figure Captions VI
1. Introduction 1
2. Numerical Model 3
3. Model Validation 6
3.1 Un-confined case 6
3.2 Confined case 8
4. Results and Discussion 11
4.1 Effect of water depth h1 = h2 11
4.1.1 Water depth effect (Case A) 12
4.1.2 Submergence effect (Case S) 14
4.1.3 Blockage effect (Case B) 15
4.2 Effect of water depth h1 > h2 17
4.2.1 upstream Froude number (Case C) 17
4.2.2 downstream Froude number (Case D)17
5. Conclusions 18
References 20
參考文獻 [1] Achenbach E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 x 106. J. Fluid Mech. 1968; 34: 625–639.
[2] Achenbach E, Heinecke E. On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6× 103 to 5× 106. J. Fluid Mech. 1981; 109:239–251.
[3] Bimbato, AM, Pereira LAA, Hirata MH. Study of the vortex shedding flow around
a body near a moving ground. J. Wind Eng. Ind. Aerodyn. 2011; 99(1): 7-17.
[4] Blevins RD. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., New
York, 1984, 568 p.
[5] Bouscasse B, Golagrossi A, Marronea S, Souto-Iglesias A. SPH modeling of
viscous flow past a circular cylinder interacting with a free surface. Computers &
Fluids 2017; 146: 190-212.
[6] Cabot W, Moin P. Approximate wall boundary conditions in the large eddy
simulation of high Reynolds number flow. Flow Turbulence and Combustion 2000; 63: 269-291.
[7] Catalano P, Wang M, Iaccarino G, Moin P. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow 2003; 24 (4): 463-469.
[8] Chu C-R, Chung C-H, Wu T-R, Wang C-Y. Numerical analysis of free surface flow over a submerged rectangular bridge deck. Journal of Hydraulic Engineering 2016; 142 (12): 10.1061/(ASCE)HY.1943-7900.0001177.
[9] Deardorff JW. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970; 41: 453-480.
[10] DeLong M. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A. 1997.
[11] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 1981; 39(1): 201-225.
[12]Hoerner SF. Fluid Dynamic Drag: Theoretical, Experimental and Statistical Information. Hoerner Fluid Dynamics, New Jersey. 1965.
[13] Liang H, Zong Z, Zou L, Zhou L, Sun L. Vortex shedding from a two-dimensional cylinder beneath a rigid wall and a free surface according to the discrete vortex method. European Journal of Mechanics-B/Fluids 2014; 43: 110-119.
20
[14] Lin M-Y. and Huang L-H. Free-surface flow past a submerged cylinder. J. of Hydrodynamic 2010; 22 (5): 209-214.
[15] Lloyd TP, and M. James. Large eddy simulations of a circular cylinder at Reynolds numbers surrounding the drag crisis. Applied Ocean Research 59 (2016): 676-686.
[16] O’Neil J. and Meneveau C. Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech., 1997; 349: 253-293.
[17] Reichl P, Hourigan K, Thompson MC. Flow pass a cylinder close to a free surface. J. Fluid Mech 2005; 533: 269-296.
[18] Roshko A. Perspectives on bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 1993; 49: 79-100.
[19] Schlichting H. Boundary Layer Theory, McGraw-Hill Inc., New York, 1979, p.817.
[20] Smagorinsky J. General circulation experiments with the primitive equations: I. The
basic experiment. Mon Weather Review 1963; 91: 99-164.
[21] Warschauer KA, Leene JA. Experiments on mean and fluctuating pressures of
circular cylinders at cross flow at very high Reynolds numbers. In: Proc. Int. Conf. on Wind Effects on Buildings and Structures, Tokyo, Japan (see also Zdravkovich 1997), 1971; 305–315.
[22] Williamson CHK. Vortex dynamics in the cylinder wake. Annu Rev. Fluid Mech. 1996; 28: 477-539.
[23] Wu T-R, Chu C-R, Huang C-J, Wang C-Y, Chien S-Y, Chen M-Z. A two-way coupled simulation of moving solids in free-surface flows. Computers and Fluids. 2014; 100: 347-355.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明