博碩士論文 104322061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.226.52.49
姓名 藍廷維(TING-WEI LAN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 作物對溫室風壓通風影響之研究
(Wind-driven Natural Ventilation of Greenhouses with Vegetation)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣地區夏季太陽輻射強、氣溫高,造成農業設施、溫室內部溫度過高,不適合作物的生長環境,故降低溫室內部溫度為設計溫室必要之考慮因素。自然通風因為可以不耗費電力,廣為簡易型溫室所採用。但缺點是通風量隨室外大氣風速、風向、溫度而變,通風量不易控制。本研究利用風洞實驗及計算流體動力學模式研究溫室長度對風壓通風之影響,研究成果發現縱深長的溫室,通風量小於縱深短的建築物。造成此現象的原因有兩個:(1)縱深短的溫室,迎風、背風面之間的壓差較大,導致通風量較大;(2)縱深長的建築物,室內阻力使得通風量較小。當溫室長度L大於溫室室內高度6倍時,室內阻抗便不可忽略。並使用孔隙阻力模式探討溫室內部作物對風壓通風之影響,對比模擬結果與實驗量得之風速來校驗孔隙阻力模式中之係數,因此數值模式可正確地預測溫室內部風場且量化溫室內作物對於風壓通風之影響。此外,本研究亦探討單斜室溫室在不同開口設置及風向下對風壓通風之影響,研究結果顯示當溫室背風面底部與屋頂皆有開口時通風量最大,且屋頂開口能夠有效的增加通風量。
摘要(英) This study uses wind tunnel experiment and a Large Eddy Simulation (LES) model to investigate the wind-driven ventilation of greenhouses with vegetation inside. The simulation results are validated by wind tunnel experiments. Then the numerical model is used to examine the influences of opening configuration, indoor vegetation on the ventilation rate. The simulation results reveal that the windward pressure was independent of the greenhouse length, while the suction pressure on the leeward side of the single greenhouse is larger than that of multi-span greenhouse. In other words, the pressure difference of single-span greenhouse is larger than that of multi-span greenhouse, and lead to a larger ventilation rate. In addition, multi-span greenhouse has larger internal resistance than that of single-span greenhouse. The ventilation rate can be predicted by a resistance model. The numerical results indicate that the porous drag model is able to predict the velocity distribution inside the greenhouse, and the resistance model can be used to assess the influences of vegetation on the ventilation rate. The results also demonstrate that the ventilation rate is influenced by the inlet and outlet opening areas. Furthermore, the roof opening can substantially increase the ventilation rate in multi-span monoslope greenhouses.
關鍵字(中) ★ 溫室
★ 風壓通風
★ 計算流體動力學模式
★ 大渦模擬
★ 風洞實驗
★ 孔隙阻力
關鍵字(英) ★ Greenhouse
★ Wind-driven ventilation
★ Computational Fluid Dynamics
★ Large Eddy Simulation
★ Wind tunnel experiment
★ Porous drag
論文目次 Abstract II
Notation IV
Table Captions V
Figure Captions VI
1. Introduction 1
2. Numerical Model 4
3. Model Validation 8
4. Results and Discussion 12
4.1 Gable-roof greenhouse 12
4.2 With vegetation 14
4.3 Monoslope-roof greenhouse 16
5. Conclusions 19
References 21
參考文獻
[1] Al-Arifi, A., Short T., Ling P. (2001). Validating the CFD model for air movements and heat transfer in ventilated greenhouse, Paper no. 014056, ASAE Annual Meeting. (doi: 10.13031/2013.4052)
[2] Awbi, H. B. (2003). Ventilation of buildings. Taylor & Francis.
[3] Baptista, F.J., Bailey, B.J., Randall, J.M., Meneses, J.F. (1999). Greenhouse ventilation rate: Theory and measurement with tracer gas techniques, J. Agric. Engng Res. 72, 363-373.
[4] Bournet, P.-E. and Boulard, T. (2010). Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture 74, 195-217.
[5] Cabot, W., Moin, P. (2000). Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbulence and Combustion 63, 269-291.
[6] Campen, J. B. (2004). Greenhouse design applying CFD for Indonesian conditions. Acta Hortic. 691, 419-424. doi:10.17660/ActaHortic.2005.691.50.
[7] Chu, C. R., and Chiang, B. F. (2013). Wind-driven cross ventilation with internal obstacles. Energy and Buildings, 67, 201-209.
[8] Chu, C. R., and Wang, Y. W. (2010). The loss factors of building openings for wind-driven ventilation. Building and Environment, 45(10), 2273-2279.
[9] Chu, C. R., Chiu, Y. H., & Wang, Y. W. (2010). An experimental study of wind-driven cross ventilation in partitioned buildings. Energy and Buildings, 42(5), 667-673.
[10] Chu, C. R., Chiu, Y. H., Chen, Y. J., Wang, Y. W., & Chou, C. P. (2009). Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross-ventilation. Building and Environment, 44(10), 2064-2072.
[11] Etheridge, D. W., & Sandberg, M. (1996). Building ventilation: theory and measurement (Vol. 50). Chichester: John Wiley & Sons.
[12] Fatnassi, H., Boulard, T., Bouirden L., (2003) Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agricultural and Forest Meteorology 118, 97-111.
[13] Forchheimer, P. (1901). Wasserbewegung durch boden. Z. Ver. Deutsch. Ing, 45(1782), 1788.
[14] Karava, P., Stathopoulos, T., & Athienitis, A. K. (2011). Airflow assessment in cross-ventilated buildings with operable façade elements. Building and Environment, 46(1), 266-279.
[15] Kittas, C., Boulard, T. Mermier, M., and G. Papadakis. (1996). Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. Journal of Agricultural Engineering Research. 65(1): 37-49.
[16] Kumar, K.S., Tiwari, K.N. Madan K. Jha, (2009). Design and technology for greenhouse cooling in tropical and subtropical regions: A review. Energy and Buildings 41 (2009) 1269–1275.
[17] Lara, J.L., Losada, I.J., Maza, M., Guanche, R., (2011). Breaking solitary wave evolution over a porous underwater step. Coastal Engineering 58 (9), 837–850.
[18] Majdoubi, H. Boulard, T. Fatnassi, H. and Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study, Agri. and Forest Meteorology 149: 1050–1062.
[19] Miguel, A. F., Van de Braak, N. J., Silva, A. M., & Bot, G. P. A. (1998). Physical modelling of natural ventilation through screens and windows in greenhouses. Journal of Agricultural Engineering Research, 70(2), 165-176.
[20] Mistriotis, A. and D. Briassoulis. (2002). Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings. Computers and Electronics in Agriculture. 34(1-3): 191-205.
[21] Mistriotis, A. Arcidiacono, C. Picuno, P. Bot, G.P.A., Scarascia-Mugnozza G. (1997). Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agri. Forest Meteorology. 88(1-4): 121-135.
[22] Norton, T., Sun, D.W., Grant, J. Fallon, R., and Dodd, V. (2007). Applications of computational fluid dynamics CFD in the modeling and design of ventilation systems in the agricultural industrial: A review. Bioresource Technology 98, 2386-2414.
[23] Ramponi, R, Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Building and Environment 53, 34-48.
[24] Raupach, M. R., & Thom, A. S. (1981). Turbulence in and above plant canopies. Annual Review of Fluid Mechanics, 13(1), 97-129.
[25] Reichrath, S., Davies, T.W. (2002). Using CFD to model the internal climate of greenhouses: past, present and future. Agronomie, 22, 3-19.
[26] Santamouris, M., & Allard, F. (1998). Natural ventilation in buildings: a design handbook. Earthscan.
[27] Teitel, M. Ziskind, G. Liran, O., Dubovsky, V. Letan, R. (2008). Effect of wind direction on greenhouse ventilation rate, airflow pattern and temperature distributions. Biosystem Engineering. 101 (3), 351-369.
[28] Tominaga, Y. Mochida, A. Yoshie, R. Kataoka, H. Nozu, T. Masaru, Y. Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn, 96, 1749-1761.
[29] Van Gent, M.R.A., (1995). Wave Interaction with Permeable Coastal Structures. Ph.D.Thesis of Delft University of Technology.
[30] Von Zabeltitz, C. (2011) Integrated Greenhouse System for Mild Climate: Climate Conditions, Design, Construction, Maintenance, Climate Control. Springer-Verlag, p.363.
[31] Wang, S., Boulard, T., & Haxaire, R. (1999). Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agricultural and forest Meteorology, 96(4), 181-188.
[32] Wu, Y. T., & Hsiao, S. C. (2013). Propagation of solitary waves over a submerged permeable breakwater. Coastal Engineering, 81, 1-18.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明