博碩士論文 104322008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.21.46.26
姓名 林岡岳(Kang-Yueh Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 多層多跨高延展隅撐構架之耐震行為研究
(Seismic Performance of Multi-Story-Multi-Bay Knee Braced Frames with High Elongation Plate)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隅撐構架為一兼顧勁度與韌性之有效結構設計,惟當隅撐構件挫屈後,桿件將因累積塑性變形達其極限,而有斷裂,結構承載性能因之而有甚大減損,為進一步提升結構耐震效能,本研究結合自復位梁柱接頭及高延展隅撐構件,形成高延展隅撐鋼結構,並將之應用於多層結構設計。研究中藉一系列配置不同高延展隅撐組合之構架反覆載重試驗,評估其強度、變形及能量消散能力,以界定其在耐震設計之應用性。研究結果顯示,在梁柱構件保持完整及適當之樓層隅撐強度比(本研究中為下層與上層隅撐強度比值小於1.431),增加下層隅撐強度可獲致較均勻之樓層位移比。另由試驗結果比較得知,配置高延展隅撐之雙層單跨構架強度可達相同梁柱尺寸抗彎構架強度之2.32至2.57倍,能量消散則為抗彎構架之4.15至4.82倍;配置高延展隅撐之雙層雙跨構架強度可達相同梁柱尺寸抗彎構架強度之1.78至2.05倍,能量消散則為抗彎構架之2.31至2.95倍,此顯示高延展隅撐在多層鋼結構之耐震設計上,具有相當之可行性。
摘要(英) Knee braced moment resisting frames (KBRF) possess adequate stiffness and ductility, thus are suitable structural forms for earthquake-resistant designs. The performance of KBRF greatly depends on the integrity of the knee braces. When knee braced members buckle under compression, the members may suffer from fracture if the plastic deformation capability is insufficient. This study is focused on the further improvement of multi-story KBRF by adopting high-ductility knee braced members with various brace strength combinations. A series of cyclic loading tests were conducted on the moment resisting frame (MRF) and KBRFs to evaluate the effectiveness of high-ductility knee brace design on the multi-story steel frame constructions. Test results show that the strength of two-story one-bay KBRFs with high-ductility knee braces is 2.32 to 2.57 times of the same-sized MRF, and the energy dissipation is also increased by 4.15 to 4.82 times. The strength of two-story two-bay KBRFs with high-ductility knee braces is 1.78 to 2.05 times of the same-sized MRF, and the energy dissipation is also increased by 2.31 to 2.95 times. It is also found from the comparisons that the improvement in frame performance is higher when the brace strength ratio between the lower and upper stories is higher, provided that the integrity of the beams is sustained. Overall evaluation on the strength, deformation capacity and energy dissipation of the KBRFs validated the effectiveness of the high-ductility knee brace design in the engineering applications.
關鍵字(中) ★ 多層構架
★ 抗彎構架
★ 高延展隅撐構架
★ 耐震性能
關鍵字(英) ★ Multi-story Frame
★ Moment Resisting Frame
★ High-ductility Knee Braced Moment Resisting Frame
★ Seismic Design
論文目次 摘要 I
ABSTRACT II
第一章 緒論 1
1-1 前言 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 國內外相關研究 4
2-1-1 抗彎構架相關研究 4
2-1-2 梁柱接頭相關研究 4
2-1-3 斜撐構架相關研究 5
2-1-4 隅撐構架相關研究 6
2-1-5 預力結構相關研究 7
2-1-6 多層多跨結構相關研究 9
2-2 鋼結構設計相關規定 10
2-2-1 強柱弱梁設計 10
2-2-2 梁斷面要求 11
第三章 理論分析與有限元素模型建立 12
3-1 前言 12
3-2 自復位梁柱接頭理論 12
3-3 隅撐構件強度 15
3-4 構架反應與隅撐構件之強度關係 16
3-5 有限元素模型建置 19
3-5-1 部件模組 19
3-5-2 屬性模組 20
3-5-3 交互作用模組 20
3-5-4 分析步幅模組 20
3-5-5 負載模組 21
3-5-6 網格模組 21
3-5-7 分析作業模組 21
3-5-8 簡化模型 22
3-6 結語 22
第四章 實驗規劃及流程 23
4-1 前言 23
4-2 實驗規劃 23
4-3 研究參數 24
4-4 試體標號及試驗群組 24
4-5 試體製作 25
4-6 試體設備 25
4-7 試驗方法 26
4-8 加載方式 27
第五章 實驗觀察與討論 28
5-1 前言 28
5-2 雙層單跨構架試驗 28
5-2-1 抗彎構架試驗(試體S-n) 28
5-2-2 高延展隅撐構架試驗(試體S-7-8) 29
5-2-3 高延展隅撐構架試驗(試體S-7-9) 31
5-2-4 高延展隅撐構架試驗(試體S-7-10) 32
5-2-5 雙層單跨構架之耐震性能評估 34
5-3 雙層雙跨構架試驗 34
5-3-1抗彎構架試驗(試體M-n) 34
5-3-2 高延展隅撐構架試驗(試體M-7-8) 35
5-3-3 高延展隅撐構架試驗(試體M-7-9) 37
5-3-4 高延展隅撐構架試驗(試體M-7-10) 38
5-3-5 雙跨雙層構架之耐震性能評估 40
第六章 實驗結果分析與討論 41
6-1 前言 41
6-2 構架強度分析 41
6-2-1 抗彎構架與高延展隅撐構架試驗比較 41
6-2-2 不同隅撐強度與構架強度關係比較 42
6-2-3 小結 43
6-3 能量消散分析 43
6-3-1 抗彎構架與高延展隅撐構架試驗比較 43
6-3-2 不同隅撐強度與構架能量消散關係比較 44
6-3-3 小結 45
6-4 構架變形能力 46
6-5 不同隅撐配置與梁反應關係 47
6-5-1 雙層單跨隅撐構架之隅撐變位比較 47
6-5-2 雙層雙跨隅撐構架之隅撐變位比較 48
6-5-3 配置不同高延展隅撐構架之梁應變比較 49
6-6 有限元素分析與比較 50
6-6-1 分析模擬與構架試驗比較 50
6-6-2 小結 51
第七章 結論與建議 52
7-1 結論 52
7-2 建議 53
參考文獻 54
參考文獻 1. Krawinkler, H. (1978), “Shear in Beam-Column Joint in Seismic Design of steel Frame”, Engineering Journal, AISC, Vol.15, NO.3, pp.82-91.
2. Tsai, K.C. and Popov, E.P. (1990), “Seismic Panel Zone on Elastic Story Drift in Steel Moment Resistance Frames”, Journal of Structural Engineering-ASCE, Vol.116, No.12, pp. 3285-3301.
3. Taranath B.S. (1988), Structural Analysis & Design of Tall Building, Mc Graw-Hill, New York.
4. Bruneau, M., Uang C.-M. and Whittaker A. (1998), “Ductile Design of Steel Structures”, McGraw-Hill Company.
5. Civjan, S.A., Engelhardt, M.D. and Gross J.L. (2000), “Retrofit of Pre-Northridge Moment-Resisting Connections, Journal of Structural Engineering-ASCE, Vol.126, Iss.4, pp.445-452.
6. Kim, T., Whittaler, A.S., Gilani, A.S.J., Bertero, V.V. and Takhirov, S.M. (2002), “Cover-Plate and Flange-Plate Steel Moment-Resisting Connections”, Journal of Structural Engineering-ASCE, Vol.128, Iss.4, pp.474-482.
7. Yu, Q.S., Uang, C.M., and Gross, J (2000), “Seismic Rehabilitation Design of Steel Moment Connection with welded Haunch”, Journal of Structural Engineering-ASCE, Vol.126, Iss.1, pp. 69-78.
8. Chen, S.J., Yeh, C.H. and Chu, J.M. (1996), “Ductile Steel Beam-to-Column Connections For Seismic Resistance”, Journal of Structural.
9. Lee, C.H., Jeon, S.W., Kim, J.H. and Uang, C.M. (2005), “Effects of Panel Zone Strength And Beam Web Connection Method On Seismic Performance Of Reduced Beam Section Steel Moment Connections”, Journal of Structural Engineering, AISC, Vol.131, Iss.12, pp.1854-1865.
10. Chou, C.C., and Tsai, K.C. (2002), “Plasticity-fibre model for steel triangular plate energy dissipating devices”, Earthquake Engineering & Structural Dynamics, Vol.31, Iss.9, pp. 1643-1655.
11. Uang, C.M.; Fan, C.C. (2001), “Cyclic stability Criteria for steel moment connections with reduced beam section”, Journal of Structural Engineering-ASCE, Vol.127, Iss.9, pp.1021-1027.
12. Remennikov, A.M. and Walpole, W.R. (1997), “Analytical prediction of seismic behavior for concentrically-braced steel systems”, Earthquake Engineering & Structural Dynamics, Vol.26, Iss.8, pp.859-874.
13. Cheng J. JR., Yam M.C.H. and Hu S.Z. (1994), “Elastic Buckling Strength of Gusset Plate Connections”, Journal of Structural Engineering, Vol.120, No.2, pp.538-539.
14. Hsu, H.L., Jean, S.Y. (2003), “Improving Seismic Design Efficiency of Petrochemical Facilities, Practice Periodical on Structural Design and Construction, Vol. 8, No. 2, pp. 107-117.
15. 彭志鴻(2009),應用不同尺度隅撐之鋼結構耐震性能研究,國立中央大學土木工程學系,碩士論文。
16. 李宗儔(2010),具挫屈控制機制之隅撐構架耐震行為研究,國立中央大學土木工程學系,碩士論文。
17. 楊智凱(2013),具自復位梁柱接頭隅撐鋼結構耐震性能研究,國立中央大學土木工程學系,碩士論文。
18. 李俐璇(2016),具高延展消能鋼板之隅撐鋼結構耐震行為研究,國立中央大學土木工程學系,碩士論文。
19. Priestley, M.J.N. and Tao, J. R. (1993), “Seismic Response of Precast Prestressed Concrete frames with partially Debonded Tendons”, PCI Journal, Jan.-Feb., pp.58-66.
20. Ricles, J. M., Sause, R., Peng, S. W. and Lu, L. W. (2002), “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections”, Journal of Structural Engineering, Vol.128, No.7, pp. 850-859.
21. Christopoulos, C., Filiatrault, A., Uang, C. M. and Folz, B. (2002), “Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames”, Journal of Structural Engineering, Vol.128, No.9, pp. 1111-1120.
22. Dowden, D. M. and Bruneau, M. (2016), “Kinematics of Self-Centering Steel Plate Shear Walls with NewZ-BREAKSS Post-Tensioned Rocking Connection”, Engineering Journal, Vol.53, No.3, pp. 117-136
23. Rojas, P., Ricles, J. M. and Sause, R. (2005), “Seismic Performance of Post-Tensioned Steel Moment Resisting Frames With Friction Device”, Journal of Structural Engineering, Vol. 131, No. 4, pp. 529-540.
24. Kim, H. J. and Christopoulos, C. (2008), “Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames”, Journal of Structural Engineering, Vol. 134, No. 11, pp. 1768-1779.
25. Chou, C. C., Chen, J. H., Chen, Y. C. and Tsai, K. C. (2006), “Evaluating Performance of Post-Tensioned steel Connections with Strands and Reduced Flange Plates”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 35, Issue. 9, pp. 1167-1185.
26. 鄭錦銅(2006),雙向預力含版R.C.梁柱接頭耐震性能研究(Ⅱ),國家地震工程研究中心,報告編號NCREE-06-023。
27. 蔡峻豪(2012),配置開槽消能鋼板之預力式橋柱耐震性能研究,國立中央大學土木工程學系,碩士論文。
28. 盧煉元(2007),結構消能摩擦材料之摩擦性能測試,結構工程期刊,第22卷,第4期,第73-95頁。
29. Larry A., James M. Ricles and Richard Sause (2007), “Experimental Evaluation of a large-Scale Buckling-Restrained Braced Frame”, Journal of Structural Engineering-ASCE, Vol.133, Iss.9, pp.1205-1214.
30. Lumpkin, E. J., Hsiao, P. C., Roeder, C. W., Lehman, D. E., Tsai, C. Y., Wu, A. C., Wei, C. Y. and Tsai, K. C. (2012), “Investigation of the seismic response of three-story special concentrically braced frames”, Journal of Constructional Steel Research, Vol. 77, pp. 131-144.
31. Zhao, B., Zhou, T., Chen, Z., Yu, J., Yan, X., Zheng, P. and Zhao, Z. (2017), “Experimental seismic behavior of SCFRT column chevron concentrically braced frames”, Journal of Constructional Steel Research, Vol. 133, pp. 141-155.
32. 陳鈺霖(2010),多層多跨隅撐鋼結構之耐震性能研究,國立中央大學土木工程學系,碩士論文。
33. 涂崢嶸(2015),多層多跨具自復位梁柱接頭隅撐構架之耐震性能研究,國立中央大學土木工程學系,碩士論文。
34. 內政部營建署(2006),鋼構造建築物鋼結構設計技術規範。
35. American Institute of steel Construction. Inc. (2005). Seismic Provisions for Steel Buildings, AISC 341-05, Chicago, IL.
36. 內政部營建署(2011),建築物耐震設計規範及解說,台北。
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明