博碩士論文 104322051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.2.28
姓名 胡家銘(Chia-Ming Hu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低鹼性膠結材應用於放射性廢棄物最終處置場封塞混凝土之研究
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 放射性廢棄物處置場混凝土涵蓋範圍很廣,在水泥材料的使用非常重要,當地下水滲透到處置坑道封塞之混凝土時,普通卜特蘭水泥會釋放高鹼性之孔隙溶液其pH值約在12~13,孔隙水滲出後遭遇緩衝材料,將使緩衝材料中具回脹能力的主要成分蒙脫石溶解,蒙脫石溶解速率隨pH提高而漸增。因此使用低鹼性膠結材經由卜作嵐反應消耗水泥水化產生之氫氧化鈣(CH),藉以降低pH值,以確保緩衝材料之安全功能。
本研究以低鹼性膠結材矽灰及飛灰取代部分水泥進行膠結漿體、砂漿及混凝土等相同膠結配比之微觀特性、工程性質及耐久性等試驗,並藉由文獻回顧找出水泥混凝土pH值的標準檢測方法,建立實驗室中檢測水泥混凝土pH值的標準方法與能力,同時也探討使用不同礦物摻料矽灰及飛灰取代水泥,對降低水泥漿體孔隙溶液pH值之成效。
結果顯示,在水泥中加入卜作嵐材料透過低鹼性膠結材的摻配,會進行卜作嵐反應消耗氫氧化鈣,並形成C-S-H膠體將有效降低孔隙溶液pH值。水泥混凝土的pH值量測方法選用移地進出法(ESL),經由不同環境檢測後,顯示ESL法具有穩定性及重複性。本研究發現要達到低鹼性封塞混凝土性質的要求,需藉由調整膠結性材料的用量,當矽灰取代量達到40 %以上時,砂漿及混凝土試體在90天齡期的pH值可降至11以下,且抗壓強度亦可符合封塞混凝土的要求。耐久性方面,矽灰取代水泥重量越多時,抵抗氯離子穿透能力越佳。但矽灰比表面積極大,容易吸水,加入過多矽灰對工作性影響甚大,需添加少量強塑劑以改善其新拌性質。另一方面,因矽灰之材料成本較高,如以飛灰取代部分水泥可降低成本並改善工作性,因此在工程性質及經濟性考量下,以矽灰及飛灰分別取代水泥重量達35%及20%的膠結材料配比,可達到低鹼性混凝土封塞的品質需求。
摘要(英)
Due to the wide range of concrete in radioactive waste disposal sites, the use of cement materials is very important, especially when the groundwater penetrates into the concrete. The Ordinary Portland Cement (OPC) releases the pore fluids of the pH 12-13. In the high pH environment, the pore water leakage after the encounter buffer material, it will make the buffer material with the expansion of the main components of montmorillonite dissolution rate which increases the pH. Therefore, the use of low-alkali cement material after the pozzolanic reaction, the consumption of calcium hydroxide solution (CH), will reduce the pH value that ensure the buffer material are safety.
In this study, the micro-characteristics, engineering properties and durability of the same cementing ratio of cement paste, mortar and concrete were replaced by low pH cement silica and fly ash. According to the references, the measurement of pH method are found that Ex-Situ leaching method is established for laboratory testing whichis easily and capabilities. To explore the use of different mineral admixture of silica fume and fly ash replace of cement, it will reduce the pore fluids of the pH value effectively.
The results show that the addition of Pozzolan material to the cement can reduce the pH value of the pore solution by adding silica fume. To achieve the requirements of the concrete plug sealing, it needs to control the amount of cementitious materials, when 40% silica fume replace of cement, the pH of mortar and concrete samples in the 90-day is lower than 11. Because of the silica fume is more expensive than fly ash and when the more silica fume is added, the workability is in bad condition, it needs add some plasticizer to improve the workability. Therefore, the silica fume and fly ash were replaced by cement weight 35 % and 20% respectively, it can achieve the requirements of quality of low pH concrete plug sealing.
關鍵字(中) ★ 卜作嵐反應
★ pH值
★ 氫氧化鈣
★ 低鹼性膠結材
★ 耐久性
關鍵字(英) ★ Pozzolanic reaction
★ Low-pH cementitious materials
★ Portlandie
論文目次
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究內容 2
1.4 名詞定義 3
第二章 文獻回顧 5
2.1 低鹼性水泥 5
2.1.1 低鹼性水泥簡介 5
2.1.2 低鹼性水泥之特性 6
2.1.3 低鹼性水泥成分與pH值之關係 7
2.1.4 低鹼性水泥鈣矽比與pH值之關係 8
2.1.5 低鹼性水泥漿體之微觀特性 10
2.1.6 低鹼性水泥研究概況及應用情形 14
2.2 低鹼性膠結材料之pH值量測方法 17
2.2.1 新拌混凝土pH量測方法 18
2.2.2 硬固混凝土pH量測方法 19
2.2.3 實驗室常用孔隙溶液pH量測方法比較 22
2.3 放射性廢棄物處置場之低鹼性混凝土配比 29
2.3.1 封塞用低鹼性混凝土 30
2.3.2 封填用低鹼性混凝土 39
2.3.3 膠結材之耐久性 41
2.4 卜作嵐材料種類及特性 47
2.4.1 卜作嵐材料 47
2.4.2 卜作嵐反應及特性 47
2.4.3 卜作嵐材料取代部分水泥之成效 48
2.4.4 矽灰的特性及應用 49
2.4.5 飛灰的特性及應用 50
2.4.6 水淬爐石粉的特性及應用 52
2.5 水泥種類及設計類型 54
2.5.1 卜特蘭水泥 (OPC) 54
2.5.2 鋁酸鈣水泥 (CAC) 56
2.5.3 硫鋁酸鈣水泥 56
2.5.4 磷酸鈣水泥 57
2.5.5 磷酸鎂水泥 57
2.6 混凝土之收縮變形 58
2.6.1 混凝土中的水 58
2.6.2 收縮變形機制 59
第三章 實驗規劃 62
3.1 試驗構想及流程 62
3.2 試驗材料 68
3.3 試驗配比及編號 71
3.3.1 膠結漿體研究 71
3.3.2 砂漿性質研究 74
3.3.3 混凝土性質研究 75
3.4 試驗設備及儀器 76
3.5 試驗方法 89
第四章 試驗結果與分析 94
4.1 膠結漿體pH值測定方法建立 94
4.2漿體性質分析 99
4.2.1 矽灰對水泥漿體性質影響(雙系統) 99
4.2.2 改變水膠比添加矽灰對pH值影響(雙系統) 105
4.2.3 矽灰及飛灰同時取代水泥對漿體性質影響(三系統) 107
4.3 砂漿性質分析 123
4.3.1 流度 123
4.3.2 pH值分析 136
4.3.3 抗壓強度試驗 138
4.3.4 乾燥收縮行為 140
4.3.5 自體收縮行為 142
4.3.6 抗硫酸鹽侵蝕 144
4.4 封塞用低鹼性混凝土性質 146
4.4.1 新拌性質分析 146
4.4.2 硬固性質分析 148
4.4.3 耐久性質分析 151
4.5 膠結漿體微觀分析 157
4.6 綜合討論 180
第五章 結論與建議 183
5.1 結論 183
5.2 建議 184
參考文獻 185
附錄一 190
附錄二 192
附錄三 194
參考文獻

行政院公共工程委員會,(1999),「公共工程飛灰混凝土使用手冊」。
黃兆龍,(2003),「高性能混凝土理論與實務」,詹氏書局,臺北。
黃兆龍,(2007),「卜作嵐混凝土使用手冊」,科技圖書。
黃兆龍,(2007),「混凝土性能與行為」,詹氏書局,第三版,臺北。
林均霖,(2016),「地質處置場封填用低鹼度膠結材配方及特性研究」,國
立中央大學土木工程學系,碩士論文。
行政院原子能委員會,(2016),「子項計畫三:低鹼性水泥混凝土於最終處
置設施之應用研究」,行政院原子能委員會放射性物料管理局,委託
研究計畫研究報告。
Andrade, C., (2003), “Preliminary physico-chemical characterization of some low pH concretes using silica fume and aluminous cement.” Proc. Workshop on qualification of low pH cement for a geological repository, Stockholm, Sweden, October 15-16.
Alonso, M.C., Garci´a Calvo, J.L., and Hidalgo, A. (2010), “Development and application of low-pH concretes for structural purposes in geological repository systems”. Eduardo Torroja Institute for Construction Sciences, Spain, pp. 286-322.
Alonso, M.C., Garci´a Calvo, J.L., Walker, C., Naito, M., Pettersson, S., Puigdomenech, I., Cuñado, M.A., Vuorio, M., Weber, H., Ueda, H., and Fujisaki, K., (2012), “Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials”, SKB R-12-02.
Barneyback, R.S., and Diamond, S., (1981), “Expression and analysis of pore fluids from hardened cement pastes and mortars”, Cement and Concrete Research, Vol. 11, (2), pp. 279–285.

Bamforth, P.B., Baston, G.M.N., Berry, J.A., Glasser, F.P., Heath, T.G., Jackson, C.P., Savage, D., and Swanton, S.W., (2012), “Cement materials for use as backfill, sealing and structural materials in geological disposal concepts. A review of current status”, Serco, United Kingdom, RP0618-252A.
Barbara, L., and Erich, W., (2012), “Chemical evolution of cementitious materials.”, Proc. Workshop organised by OECD/NEA Integration Group for the Safety Case, Cementitious materials in safety cases for geological repositories for radioactive waste: role, evolution and interactions, Brussels, Belgium, November 17-19, pp. 69-72.
Behnood, A., Kim, V.T., and Nele, D.B., (2016), “Methods for measuring pH in concrete: A review”, Construction and Building Materials, Vol. 105, pp. 176–188.
Céline, C., Dit, C., Simone, C., Didier, N., Stéphanie, L., and Xavier, B., (2006), “Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories”, Cement and Concrete Research, Vol. 36, (12), pp. 2152-2163.
Cyr, M., Rivard, P., Labrecque, F., and Daidie, A., (2008), “High-pressure device for fluid extraction from porous materials: application to cement based materials”, pp. 2653–2658.
Codina, M., Cau-dit-Coumes, C., Bescop, P., Verdier, J., Ollivier, J.P., (2008), “Design and characterization of low-heat and low-alkalinity cements”, Cement and Concrete Research, Vol. 38, pp. 437-448.
Cau, D., and Coumes, C., (2008), “Low pH cements for waste repositories: a review, in Mechanisms and Modelling of Waste/Cement Interactions”, Le Croisic, France, pp. 12-16,.
Carsten, V., Björn, L., Kjell, W., and Franziska, B., (2009), “Low pH self-compacting concrete for deposition tunnel plugs”, Cement and Concrete Research Institute, SKB R-09-07.

David, S., and Steven, B., (2007), “Low pH Cements”, SKI Report, 32, ISSN 1104-1374.
Esping, O., (2007), “Early age properties of self-compacting concrete- Effects of fine aggregate and limestone filler, doctoral thesis”, Chalmers University of Technology, Göteborg, Sweden.
García, J.L., Alonso, M.C., Hidalgo, A., and Fernández, L.L., (2007), “Design of Low-pH Cementitious Materials Based on Functional Requirements”, R&D on low-pH cement for a geological repository, 3rd workshop, pp. 40-51.
Harris, A.W., Manning, M.C., Tearle, W.M., and Tweed, C.J., (2002), “Testing of models of the dissolution of cements-leaching of synthetic C-S-H gels”, Cement and Concrete Research, Vol. 32, pp. 731-746.
Holt, E., (2007), “Durability of low-pH injection grout”, Posiva Working Report, pp. 57-63.
Japan Nuclear Cycle (JNC) Development Institute, (2005), “H17: Development and management of the technical knowledge base for the geological disposal of HLW-Supporting report: Development of engineering technology”, Tokai, JNC-TN1400.
José-Luis, F.C., Fernando, H., and Jaime, C., (2005), “Potential applications of shotcrete techniques in HLW repositories”, Engineering aspects and chemical implications, 2nd low-pH workshop. Enresa, SKB, and the ESDRED-project, pp. 150-160.
Jorma, A.S., and Reikkola, O., (2008), “KBS-3H design description 2005”, Swedish Nuclear Fuel and Waste Management, SKB R-08-29.
Kronlöf, A., (2004), “Injection Grout for Deep Repositories-Low pH Cementitious Grout for Larger Fractures: Testing Technical Performance of Materials”, Posiva Oy, Olkiluoto, Finland. Working Report, pp. 41-45.
Kronlöf, A., (2005), “Injection Grout for Deep Repositories-Low pH Cementitious Grout for Larger Fractures: Testing Effect of Superplasticiser on Technical Performance”, Posiva Oy, Olkiluoto, Finland. Working Report, pp. 12-18.
Longuet, P., (1976), “La protection des armatures dans le beton arme elabore avec desciments de laitiers”, Silic. Ind. 8, pp. 321-328.
Larbi, J.A., and Bijen, J.M., (1990), “Interaction of polymers with portland cement during cement systems”, Cement and Concrete Research, Vol. 20, pp. 139-147.
Luís, F.L., Maria, C.A., Jose, L., and Garcia, A.H., (2007), “Shotcrete development for low-pH cements”, 2nd low-pH workshop 2005, Enresa, SKB and the ESDRED-project, pp. 161-171.
Lee, N.K., Jang, J.G., and Lee, H.K., (2014), “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”, Cement and Concrete Research, Vol. 21, pp. 239-248.
ONDRAF/NIRAS, (2004), “Multi-criteria analysis on the selection of a reference EBS design for vitrified high-level waste”, ONDAF/NIRAS Report NIROND.
Pablo, C.J., and Fernando, P., (2015), “Pozzolanic effect of porcelain polishing residue in Portland cement”, Journal of Cleaner Production, pp. 84-88.
Reinhardt, H.W., and Wuestholz, T., (2007), “Tensile deformation behaviour of self-compacting concrete under sustained loading”, 5th International RILEM Symposium on Self-Compacting Concrete, Ghent, Belgium.
Rossen, J.E., Lothenbach, B., and Scrivener, K.L., (2015), “Composition of C-S-H in pastes with increasing levels of silica fume addition”, Cement and Concrete Research, pp. 14-22.
Stronach, S.A., Walker, N.L., Macphee, D.E., and Glasser, F.P., (1997), “Reactions between cement and oxide: The system CaO-SiO2-As2O3-H2O at 25oC”, Waste Management, Vol. 17, pp. 9-13.
Sagüés, A.A., Moreno, E.I., and Andrade, C., (1997), “Evolution of pH during in-situ leaching in small concrete cavities”, Cement and Concrete Research, Vol. 27, pp. 1747-1759.
Snellman, M.T., (2005), “Long-term safety aspects of the use of cement in a repository for spent fuel.” Proc. 2nd low pH Workshop, Enresa, SKB and the ESDRED-project, Madrid, Spain, June 15-16, pp. 27-40.
Taylor, H.F.W., (1997), “Cement Chemistry”, Thomas Telford, London.
Tatsuo, N., Takeshi, Y., Michihiro, H., and Hiroyoshi, U., (2007), “Mechanical Properties of Low pH Concretes, LAC, HFSC AND SAC”, R&D on low-pH cement for a geological repository, 3rd workshop, Paris, pp. 62-71.
Vuorinen, U., Lehikoinen, J., Imoto, H., Yamamoto, T., and Cruz, A.M., (2005), “Injection Grout for Deep Repositories, Subproject 1: Low pH Cementitious Grout for Larger Fractures, Leach Testing of Grout Mixes and Evaluation of the Long-Term Safety”, Posiva Oy, Olkiluoto, Finland. Working Report.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明