博碩士論文 104322608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.139.108.19
姓名 法麗佳(Himatul Farichah)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討
(Representative Elementary Volume of P32 and Hydraulic Conductivity of Fractured Rock masses)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討。本文利用FracMan軟體作為生成離散裂隙網絡(DFN)之工具以模擬岩體裂隙。裂隙程度部分,本文設計一系列之參數研究,包括:傾角、傾向、費雪常數、岩體模型尺寸與形狀、取樣尺寸、裂隙直徑與岩體裂隙程度進行探討,量化各參數對於量測P32變異係數之影響,提出一計算量測P32之變異係數的方程式,其方程式以取樣體積、裂隙直徑及P32表示,並引入可接受之變異係數,即可計算岩體之幾何表徵單元體積。此外本文也利用數個現地案例進行探討並驗證此一方程式之正確性與應用性。
水利傳導係數部分,本文利用FracMan中兩個不同計算水利傳導係數之模式(Conventional Oda與Oda gold)設計一系列之參數研究,Conventional Oda部分包括:取樣尺寸、裂隙直徑、岩體裂隙程度、導水係數與破裂面開口寬進行探討;而Oda gold部分僅針對岩體裂隙程度進行探討。最後本文利用蒙地卡羅模擬以決定水利傳導係數之表徵單元體積。
摘要(英)
This study presents the representative elementary volume (REV) of P32 (fracture intensity) and hydraulic conductivity of fractured rock mass. Discrete fracture network (DFN) generated by FracMan is adopted to create rock mass models. A series of parametric studies including dip angle, dip direction, Fisher constant κ, size of rock mass model, shape of rock mass model, specimen volume, fracture diameter, and P32 were investigated to study the REV of P32. Based on the results of the parametric studies, a novel equation to quantify the COV (Coefficient of variance) of P32 in terms of specimen volume, fracture diameter and P32 was established. A precise REV size can be obtained easily by assigning the acceptable COV. Thereafter, some case studies were used to verify the proposed novel equation.
Conventional Oda and Oda gold were adopted to estimate the hydraulic conductivity of the fractured rock mass. By using Oda conventional, a series of parametric studies including specimen volume, fracture diameter, P32, transmissivity, and aperture were investigated to study the REV of hydraulic conductivity. Subsequently, that REV of hydraulic conductivity was compared with the REV of P32. In the other hand, by using Oda gold, only P32 was chosen as parametric study. Eventually, a proposed new method was conducted by examining the Monte Carlo simulation for REV of hydraulic conductivity determination.
關鍵字(中) ★ 裂隙岩體
★ 表徵單元體積(REV)
★ 離散裂隙網絡 (DFN)
★ 裂隙程度
★ 水利傳導係數
★ Oda模型
★ 蒙地卡羅模擬
關鍵字(英) ★ discrete fracture network (DFN)
★ fracture intensity
★ fractured rock mass
★ hydraulic conductivity
★ Monte Carlo simulation
★ Oda
★ representative elementary volume (REV)
論文目次
Chinese Abstract i
Abstract ii
Acknowledgements iii
Table of Content iv
List of Figures viii
List of Tables xi
CHAPTER 1: INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objective 2
1.3 Research Limitation 3
1.4 Research Organization 3
CHAPTER 2: LITERATURE REVIEW 5
2.1 Representative Elementary Volume (REV) 5
2.2 Discrete Fracture Network 7
2.2.1 Fracture shape and size 8
2.2.2 Fracture planarity 9
2.2.3 Fracture location 9
2.2.4 Fracture orientation 9
2.3 Hydraulic theories 11
2.3.1 Darcy’s law 11
2.3.2 Cubic law 12
2.3.3 Oda’s permeability 13
2.4 Fracture intensity 16
2.5 Intensity measurement in 3-D 19
2.5.1 Area sampling 19
2.5.2 Line sampling 20
2.6 Statistical theories 21
2.6.1 Basic definitions 21
2.6.2 Coefficient of variance 21
2.6.3 Central limit theorem 22
2.6.4 Total sum of square 23
2.6.5 Monte Carlo simulation 24
CHAPTER 3 METHODOLOGY OF NUMERICAL SIMULATION 25
3.1 Methodology of numerical simulation 25
3.2 Generating rock mass model 27
3.3 REV of P32 28
3.3.1 Parametric studies 28
3.3.2 Sampling method 29
3.4 REV of hydraulic conductivity 30
3.4.1 Parametric studies 30
3.4.2 Sampling method 31
CHAPTER 4 THE RESULTS OF NUMERICAL SIMULATIONS FOR REV OF P32 32
4.1 The results of parametric studies 32
4.1.1 Parametric study of the size and the shape of rock mass model 32
4.1.2 Parametric study of Dip, dip direction and Fisher constant κ 33
4.1.3 Parametric study of specimen volume 36
4.1.4 Parametric study of fracture intensity 37
4.1.5 Parametric study of fracture diameter 38
4.2 Determining equation of COV of P32 39
CHAPTER 5 THE APPLICATION AND THE VALIDATION OF PROPOSED EQUATION 43
5.1 Application of proposed equation 43
5.2 Validation of proposed equation 48
5.2.1 Comparison with the study from Esmaieli et al. (2010) 48
5.2.2 Discussions of the Comparison with the study from Esmaieli et al. (2010) 49
5.2.3 Comparison with the study from Grenon (2011) 51
5.2.4 Discussion of the Comparison with the study from Grenon (2011) 55
CHAPTER 6 THE RESULT OF NUMERICAL SIMULATION FOR REV OF HYDRAULIC CONDUCTIVITY 57
6.1 Numerical simulation results of parametric studies for conventional Oda approach 57
6.1.1 Parametric study of fracture intensity 57
6.1.2 Parametric study of specimen volume 59
6.1.3 Parametric study of fracture diameter 62
6.1.4 Aperture as parametric study 63
6.1.5 Parametric study of transmissivity 66
6.2 Discussion about the comparison of the results from COV of P32 and hydraulic conductivity 68
6.3 Examining Monte Carlo simulation for COV of hydraulic conductivity by conventional Oda 70
6.4 Discussion about the result of examining Monte Carlo simulation for COV of hydraulic conductivity by conventional Oda 79
6.5 Numerical simulation results of parametric studies for Oda Gold approach 80
6.2.1 Parametric study of fracture intensity 80
6.6 Examining Monte Carlo simulation for REV of hydraulic conductivity by Oda Gold 82
6.7 Discussion about the result of examining Monte Carlo simulation for REV of hydraulic conductivity by Oda Gold 85
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 86
7.1 Conclusions 86
7.2 Recommendations 88
REFERENCES 89
APPENDIX I 93
參考文獻
1. Baecher, Gregory B., and Nicholas A. L., ”Trace length biases in joint surveys”, 19th US Symposium on Rock Mechanics (USRMS), United State (1978).
2. Bear, J., “Dynamics of Fluids in Porous Media”, American Elsevier, New York, (1972).
3. Bear, J., “Dynamics of fluids in porous media”. Courier Corporation (2013).
4. Brady, B. H. G. (Barry H. G.) & Brown, E. T. (Edwin T.), 1938- (2004). Rock mechanics: for underground mining(3rd ed). Kluwer Academic Publishers, Dordrecht.
5. Coefficient of variation. (2017, June 2). In Wikipedia, The Free Encyclopedia. Retrieved 05:11, June 20, 2017,
from https://en.wikipedia.org/w/index.php?title=Coefficient_of_variation&oldid=783495744.
6. Dershowitz, W. S., “A probabilistic model for the deformability of jointed rock masses”, Diss. MS Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, (1979).
7. Dershowitz W. S., “Rock fracture systems”, Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, Massachusetts, (1984)
8. Dershowitz W.S., personal communication, (2007)
9. Dershowitz W.S., Einstein HH., “Characterizing rock fracture geometry with fracture system models”, Rock Mechanics and Rock Engineering. Vol. 21, pp. 21–51 (1988).
10. Dershowitz, William S., and Hans H. Herda. ”Interpretation of fracture spacing and intensity.” The 33th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, (1992).
11. Esmaieli, K., J. Hadjigeorgiou, and M. Grenon, “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine”, International Journal of Rock Mechanics and Mining Sciences. Vol. 47, pp. 915-926 (2010).
12. Ferris, J. G., Knowles, D. B., Brown, R. H., & Stallman, R. W., “Theory of aquifer tests”, US Geological Survey, pp. 69-174 (1962).
13. Florio, R., and Jose A., “A comparative study of the tensor and upscaling methods for evaluating permeability in fractured reservoirs”, The 17th Annual Conference of the International Association for Mathematical Geosciences, Germany, (2015).
14. Golder Associates, FracMan7: User Documentation, Golder Associates Inc (2011).
15. Grenon, M., John Hadjigeorgiou, “Applications of fracture system models (FSM) in mining and civil rock engineering design” International Journal of Mining, Reclamation and Environment. Vol. 26, pp55-73 (2012).
16. Guo Ming Chuan, “複合岩體之岩塊體積比量測及其力學行為” PhD thesis National Central University, Taiwan (2005).
17. Gutierrez, M., Dong-Joon Yoan, “Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses”, International Journal of Rock Mechanics and Mining Sciences. Vol. 7, pp. 626-637 (2015).
18. Hill, R., “Elastic properties of reinforced solids: Some theoretical principle”, Journal of the Mechanics and Physics of Solids. Vol. 11, No. 5, pp. 357-372 (1963).
19. Hudson, John A., and John P. Harrison. Engineering rock mechanics: an introduction to the principles. Elsevier (2000).
20. Hydraulic conductivity. (2016, December 31). In AQTESOLV. Retrieved 13:00, June 20, 2017, from http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm.
21. Jane, C. S., and Paul A. Witherspoon, ”A model for steady fluid flow in random three dimensional networks of disc-shaped fractures”, Water Resources Research, Vol. 21.No. 8, pp. 1105-1115 (1985).
22. JianPing, Y., Chen WeiZhong, Yang DianSen and Yuan JingQing, ”Numerical determination of strength and deformability of fractured rock mass by FEM modeling.” Journal of Computer and Geotechnics, Vol.64, No. 3, pp. 20-31 (2014).
23. Klimczak, C., Schultz, R.A., Parashar, R. and Reeves, D.M., “Cubic law with aperture-length correlation: implications for network scale fluid flow”, Hydrogeology Journal, Vol. 18, No.4, pp.851-862 (2010).
24. Krantz R.E., Frankel A.D., Engelder T, Scholz C. H., “The permeability of whole and fractureed Barre granite”, International Journal of Rock Mechanics and Mining Sciences Vol.16, pp. 225–234 (1979).
25. La Pointe, Paul R. ”Analysis of the spatial variation in rock mass properties through geostatistics.” In The 21st US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 1980.
26. Louis, C., “A study of groundwater flow in jointed rock and its influence on the stability of rock masses”, London, Eng: Imperial College of Science and Technology (1969).
27. Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon, “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol. 8, No. 3, pp. 645-658 (1982).
28. Long, J. C. S., and Paul A. Witherspoon, ”The relationship of the degree of interconnection to permeability in fracture networks.” Journal of Geophysical Research: Solid Earth 90, no. B4, pp. 3087-3098 (1985).
29. Mardia, K. V., “Statistics of directional data”. Academic press. (2014).
30. Mauldon, M. ”Intersection probabilities of impersistent joints”, International journal of rock mechanics and mining sciences & geomechanics abstracts, Vol. 31, No. 2, (1994).
31. Min KB, Jing L., “Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method”, International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 6, pp. 795–816 (2003).
32. Monte Carlo method. (2017, June 16). In Wikipedia, The Free Encyclopedia. Retrieved 04:55, June 20, 2017,
from https://en.wikipedia.org/w/index.php?title=Monte_Carlo_method&oldid=786038227.
33. Oda M., “A method for evaluating the representative elementary volume based on fracture survey of rock mass”, Canadian Geotechnical Journal, Vol. 25, pp. 440–447 (1988).
34. Oda, M., “Permeability tensor for discontinuous rock masses”, Geotechnique, Vol. 35, pp.483-95, (1985).
35. Oda, M., “Similarity rule of crack geometry in statistically homogeneous rock masses” Mech. Mater., Vol. 3, pp. 119-129 (1984).
36. Pinto A, Da C. H., “Scale effects in rock mechanics”, A.A.Balkema Publishers, Rotterdam (1993).
37. Robertson, A., “The interpretation of geological factors for use in slope stability” Proc. Symp. Theoretical Background to the Planning of Open Pit Mines with Special Reference to Slope Stability, pp. 55-71 (1970).
38. Rogers, S., D. Elmo, G. Webb, and A. Catalan. ”Volumetric fracture intensity measurement for improved rock mass characterisation and fragmentation assessment in block caving operations.” Rock Mechanics and Rock Engineering, Vol. 48, No. 2, pp. 633-649 (2015).
39. Scheidegger, A.E., “General theory of dispersion in porous media”, Journal of Geophysical Research, Vol. 66, No.10, pp.3273-3278 (1961).
40. Schultz R., “Relative scale and the strength and deformability of rock masses”, Journal Structure Geology, Vol. 18, no. 11, pp. 39–49 (1996).
41. Snow D. T., “A parallel plate model of fractured permeable media” PhD Thesis Univ. of Calif., Berkeley, USA (1965).
42. Stuart, A. and Ord, J. K., “Kendall’s Advanced Theory of Statistics, Vol. 2”, Oxford University Press, New York (1991).
43. Tsang, Y. W., and P. A. Witherspoon, “Hydromechanical behavior of a deformable rock fracture subject to normal stress”, Journal of Geophysics, Vol. 86, No. B10, pp. 9287–9298 (1981)
44. Warburton, P. M., ”A stereological interpretation of joint trace data.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 17, no. 4 (1980).
45. Wei, Z. Q., P. Egger and F. Descoeudres, “Permeability prediction fo fractureed rock masses”, International Journal of Rock Mechanics and Mining Sciences, Vol. 32, pp. 251-261 (1995).
46. Will, Robert A. ”The integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models.” PhD diss., Texas A&M University (2004).
47. Witherspoon P. A., Wang J. S. Y, Iwai K, Gale J. E., “Validity of cubic law for fluid flow in a deformable rock fracture”, Water Resources Research, Vol.16, pp. 1016–1024 (1980).
48. Zhang G. K., and Xu W. Y., “Analysis of fracture network simulation method and REV scale”, Rock and Soil Mechanics, Vol. 29, no. 6, pp. 1675–1680 (2008).
49. Zhang, W., Jian-Ping Chen, and Chang Liu, “Determination of Geometrical and Structural Representative Volume Elements at the Baihetan Dam site” Rock Mechanics and Rock Engineering, Vol. 45, pp. 409-419 (2012).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2017-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明