摘要(英) |
The initial condition of a model plays an important role in typhoon forecasts. In this study, the initial typhoon vortex is replaced by a dynamically adjusted typhoon vortex, which is derived from cycling runs of one-hour MPAS model integration. In this study, the MPAS variable-resolution of 60-15 km is used, and the region with 15-km resolution covers the East Asia and North Western Pacific. Three experiments are conducted for each typhoon case, i.e., Typhoon Soudelor (2015), Dujuan (2015), Nepartak (2016) and Megi (2016). All of the initial conditions come from National Centers for Environmental Prediction (NCEP) Final (FNL) analysis but in different resolutions, i.e., 1 degree (CTRL), 0.25 degree (CTRH), and cycling runs with resolution of 0.25 degree (NT).
After about 40-80 cycles for typhoon Soudelor, the typhoon structure is greatly improved than the NCEP global analysis by providing a more organized eyewall. The results show that NT has improvements in early track predictions for typhoons Soudelor, Nepatak and Megi, but in the later simulation for typhoon Dujuan. The NT run for typhoon Soudelor obtains a consistent rainfall pattern with a double-peak precipitation, which in a better agreement with the observation compared to the no-bogussing run, even though the extreme at the northeast side is slightly southward. For the rainfall verification, NT shows better score with extreme (smaller and larger) thresholds in equitable threat score, bias score and probability of detection, but the CTRH has higher score in the middle thresholds. As for spatial correlation coefficient, the accumulated rainfall in different periods is better for CTRH. In general, all the spatial correlation coefficients are very similar and more than 0.5. Generally speaking, NT has the best simulation in the 72-h mean track error, minimum pressure, and maximum wind speed. Therefore, the dynamically adjusted vortex has a positive impact on the typhoon simulations, especially in the intensity and structure. |
參考文獻 |
陳舒雅,2008:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,1-153。
陳致穎,2014:颱風渦旋初始化與資料同化對於颱風預報的影響。國立中央大學,大氣科學學系,博士論文,1-107。
黃子茂,2012:同化虛擬位渦反演渦旋對颱風凡那比颱風初始場分析及預報之影響。國立中央大學大氣物理研究所碩士論文,1-59。
董承錡,2016:同化GPS RO資料之初始場對於MPAS颱風模擬的影響。國立中央大學大氣物理研究所碩士論文,1-65。
江秉儒,2016:利用以GSI-3DVAR為基礎系集變分混合同化系統探討GPS掩星觀測對熱帶氣旋模擬之影響。國立中央大學大氣物理研究所碩士論文,1-60。
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Mon. Wea. Rev., 121, 2046-2061.
Chen, C.-Y., Y.-L. Chen, and H. V. Nguyen, 2014: The spin-up process of a cyclone vortex in a tropical cyclone initialization scheme and its impact on the initial TC structure. SOLA, 10, 93–97.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Ocean. Sci., 20, 133–154.
Davis, C., A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 4141-4160.
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. Air Force Weather Agency (AFWA) Rep., 12 pp.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022– 3036.
Heinzeller, D., M.G. Duda, and H. Kunstmann, 2016: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment. Geosci. Model Dev., 9, 77-110.
Hsiao, L.-F., C. S. Liou, T. C. Yeh, Y. R. Guo, D. S. Chen, K. N. Huang, C. T. Terng, and J. H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 3298–3315.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements on typhoon forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931–953.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
¬¬——, M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791–2801.
Park, S.-H, W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case., Mon. Wea. Rev., 141,3116-3129.
Park, S.-H., J. B. Klemp and W. C. Skamarock, 2014: A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Park, Mon. Wea. Rev., 142, 3614-3634.
Pu, Z-X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129, 2023–2039.
Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J.
Climate, 26, 2432–2452.
Rauscher, S. A., & Ringler, T. D.2014: Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A., Mon. Wea. Rev, 142(11), 4256–4268.
Sandbach, S., J. Thuburn, D. Vassilev, and M. G. Duda, 2015: A Semi-Implicit Version of the MPAS-Atmosphere Dynamical Core. Mon. Wea. Rev., 143, 3838–3855.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using Centroidal Voronoi tessellations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.
Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139,1463–1491.
Nguyen, H. V., and Y.-L. Chen, 2014: Improvements to a Tropical Cyclone Initialization Scheme and Impacts on Forecasts. Mon. Wea. Rev., 142, 4340-4356.
Wu, C-C., K-H. Chou, Y. Wang, and Y-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252–2269.
Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci, 57, 836–860. |