博碩士論文 104426007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.138.114.94
姓名 黃靖華(Jing-Hua Huang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著網路技術的快速進步,人類日常生活越來越與網路習習相關,加上電腦設備的高度普及也推動了電子商務的發展,消費者透過電視或網路購物也愈來愈普遍。現代的市場需求逐漸轉變為少量、多樣與客製化,這也使得物流中心面臨多元的挑戰。近幾年來,由於互聯網的概念逐漸影響到各個企業中,也推動了工業4.0的新觀念。
美國亞馬遜新一代物流中心的 Kiva 系統顛覆了傳統物流中心的作業方 式,在此系統中最重要的創新就是 Kiva機器人,Kiva 機器人會搬運貨架再運送至揀貨工作站讓揀貨人員揀取客戶所需之訂單,這突破了物流中心裡傳統以人去揀取貨物的揀貨方式,藉由貨到人的作業方式,不但節省了大量人力,也提高了速度、準確度和靈活性,因此提升了作業效率,使揀貨人員能以更快的速度完成訂單。
本研究是模擬在類似Kiva系統的作業環境下,探討Kiva機器人分配與Pod停放位置分配等問題,並搭配不同的補貨條件,應用模擬軟體分析結果並找出本研究所提出之法則在不同因子下的表現,期望透過 Kiva 系統的高彈性與即時掌握訊息的優勢能有效減少 Kiva 機器人所行走之路徑,讓整個系統達到最佳效能。
摘要(英)
As the rapid progress of Internet technology, human daily life is more close to Internet. In addition, the high popularity of computer equipment, it also promoted the development of e-commerce. Consumers purchase goods via TV channel and online store is becoming more general. The market demand gradually transformed into “a small, diverse and customization”, which also makes distribution center face multiple challenges. In recent years, since IoT gradually affect the enterprises, it brings a new concept-Industry 4.0.
Kiva System, the new generation of distribution center in Amazon, subverted the way of operation in traditional logistics center. The most important innovation in this system is Kiva Robot. They can carry and delivery the shelves to the picking stations that employees can pick up the products according to the order. Kiva System broke through the traditional way picked goods by picker. By goods to people, it not only saves lots of labor, but also improves the speed, accuracy and flexibility. Therefore, it enhances the efficiency of operation so that pickers can fulfill the order at faster speed.
In this paper, we simulate the problem of Kiva Robot allocation and Pod storage allocation with different replenishment conditions in an environment resembles Kiva System. The simulation software is used analyze the results and find out the performance of rules proposed by this study in different factors. We expect that the flexibility of the Kiva system and the advantage of receiving instant message will effectively reduce the path of the Kiva robot and achieve the best performance for the entire system.
關鍵字(中) ★ 物聯網
★ 工業4.0
★ 揀貨作業
★ Kiva系統
關鍵字(英)
論文目次
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 亞馬遜第八代物流中心 2
1.3 研究動機 3
1.4 研究目的 4
1.5 研究環境 5
1.6 研究方法說明 6
1.7 論文架構 7
第二章 文獻探討 9
2.1 物流 9
2.1.1 物流之定義 11
2.1.2 物流中心之類型 12
2.1.3 倉庫與物流中心之作業 15
2.2 揀貨作業 18
2.2.1 揀貨作業方式 19
2.2.2 揀貨路徑策略 22
2.3 自動化物料搬運系統 28
2.3.1 無人搬運車系統 29
2.3.2 無人搬運車之派送相關研究 31
2.4 Kiva系統 34
2.4.1 Kiva系統介紹 35
2.4.2 Kiva 系統之人工智慧 39
2.4.3 Kiva系統之優點 41
2.4.4 Kiva系統之決策指派問題 43
第三章 研究方法 46
3.1 符號及變數定義 46
3.2 Kiva 系統中揀貨工作站 WS(w) 之作業流程 47
3.3 Kiva 系統中 Pod(p) 之作業流程 50
3.4 研究方法整理 53
3.5 Kiva 分配於 Pod 之相關法則 53
3.5.1 隨機分配法則 54
3.5.2 與 Pod 距離最近之Kiva優先分配法則 54
3.5.3 閒置最久之 Kiva 優先分配法則 56
3.5.4 使用率最低之 Kiva 優先分配法則 58
3.5.5 剩餘電力最多之 Kiva 優先分配法則 59
3.6 Pod 暫存區位置指派法則 61
3.6.1 隨機指派位置法則 61
3.6.2 固定位置停放法則 62
3.6.3 與 Pod 目前位置距離最近的位置優先分配法則 62
3.6.4 與 Pod 原所在之揀貨工作站距離最近的位置優先分配法則 64
3.6.5 與揀貨工作站中心點距離最近的位置優先分配法則 66
3.6.6 與揀貨工作站(需求)重心點距離最近的位置優先分配法則 68
3.7 補貨條件 70
第四章 模擬實驗與分析 71
4.1 前言 71
4.2 模擬實驗 71
4.2.1 環境設定 71
4.2.2 總實驗訂單張數 74
4.2.3 環境假設 74
4.2.4 實驗因子組合 75
4.3 績效評估準則 77
4.4 統計分析 78
4.4.1 依『訂單流程時間(Order Flow Time)』為績效評估值 79
4.4.1.1 主要效果項分析(訂單流程時間) 80
4.4.1.2 兩因子分析(訂單流程時間) 83
4.4.1.3 最佳因子組合分析(依Order Flow Time績效值) 90
4.4.2 依『總系統執行時間(TST)』為績效評估值 91
4.4.2.1 主要效果項分析(總系統執行時間) 92
4.4.2.2 兩因子分析(總系統執行時間) 95
4.4.2.3 最佳因子組合分析(依TST績效值) 102
4.4.3 依『Kiva 之總忙碌時間(TBT)』為績效評估值 103
4.4.3.1 主要效果項分析(Kiva 總忙碌時間) 104
4.4.3.2 兩因子分析(Kiva 總忙碌時間) 107
4.4.3.3 最佳因子組合分析(依TBT績效值) 114
4.5 實驗結論 115
第五章 結論與後續建議 117
5.1 研究結論 117
5.2 未來研究建議 118
參考文獻 120
中文文獻 120
英文文獻 122
參考文獻
中文文獻
1. 吳潤濤、靳偉、王之泰,1986,「物流手冊」,中國物資出版社,北京。
2. 呂錦山、王翊和,2010,「國際物流與供應鏈管理」,滄海出版社,台中。
3. 汝宜紅、鄭凱、朱煜,2012,「現代物流」,清華大學出版社,北京。
4. 林鴻鈞,2006,「揀貨中心揀貨策略與訂單選取之研究」,國立中央大學工業管理研究所,碩士論文。
5. 周曉光、張喜妹、劉玉坤,2015,「一種基於移動機器人的配送中心柔性揀
選系統」,北京郵電大學,北京。
6. 張有恆,1998,「物流管理」,華泰文化事業股份有限公司,台北。
7. 黃思明,1994,「台灣物流業者的類型與核心管理技術,物流管理系列研討會論文集。
8. 黃靖文,2014,「各類揀貨路徑規劃方法於分區揀貨倉庫之表現」,中央大學工業管理研究所,碩士論文。
9. 董福慶、陳明德,1995,「物流中心揀貨作業」,機械工業雜誌,初版。
10. 經濟部商業司,1996,「物流經營管理實務」,中國生產力中心,台北。
11. 廖建榮,2003,「物流中心的規劃技術」,中國生產力中心,台北。
12. 趙義隆,1994,「專門店與零售店之發展對我國行銷通路演變之策略涵義」,全國零售通路現代化研討會論文集,經濟部商業司,台北。
13. 趙廷偉,2012,「具語音引導揀貨系統之揀貨作業的執行與績效」,國立中
央大學工業管理研究所,碩士論文。
14. 賴順良,2009,「物流中心之訂單選取與揀貨路徑規劃的研究」,國立中央大學工業管理研究所,碩士論文。
15. 錢尚璞,2003,「揀貨中心之儲位配置與揀貨策略的研究」,中央大學工業管理研究所,碩士論文。
16. 機器人網,2016,「未來無人工廠:只有機器人還不夠,還要AGV」,2017/1/5,取自:https://read01.com/nM3GBN.html。

英文文獻
1. Andrea, R.D., & Wurman, P. (2008). Future challenges of coordinating hundreds of autonomous vehicles in distribution facilities. 2008 IEEE International Conference on Technologies for Practical Robot Applications, Woburn.
2. Andrea, R.D. (2012). Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand challenges ahead. IEEE Transactions on Automation Science and Engineering, 9(4), 638-639.
3. Bozer, Y. A., Tanchoco, J. M. A., Tompkins, J. A., & White, J. A.(2003). Facilities planning, John Wiley & Sons.
4. Bartholdi, J. J., & Hackman, S. T. (2011). Warehouse & distribution science release 0.94, Georgia Tech Supply Chain & Logistics Institute.
5. Bratcu, A. I., & Dolgui, A. (2005). A survey of the self-balancing production lines (“bucket brigades”). Journal of Intelligent Manufacturing, 16(2), 139-158.
6. Bartholdui, J. J., & Platzman, L. K. (1989). Decentralized control of automated guided vehicles on a simple loop. IIE transactions, 21(1), 76-81.
7. Bilge, U., & Tanchoco, J. M. (1997). AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, 16(3), 159-174.
8. Coyle, J. J., Bardi, E. J., & Langley, C. J. (1996). The management of business logistics, West publishing company.
9. Chackelson, C., Errasti, A., Ciprés, D., & Lahoz, F. (2013). Evaluating order picking performance trade-offs by configuring main operating strategies in a retail distributor: A Design of Experiments approach. International Journal of Production Research, 51(20), 6097-6109.
10. Cadwalladr, C. (2013). My week as an Amazon insider, Retrieved November 22, 2016, from https://www.theguardian.com/technology/2013/dec/01/week-amazon-insider-feature-treatment-employees-work.
11. Carlson, J., & Murphy, R. R. (2003). Reliability analysis of mobile robots. 2003 IEEE International Conference on Robotics and Automation, Taipei.
12. Chabot, T., Lahyani, R., Coelho, L. C., & Renaud, J. (2016). Order picking problems under weight, fragility and category constraints. International Journal of Production Research, 1-19.
13. Chan, F. T., & Chan, H. K. (2011). Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Systems with Applications, 38(3), 2686-2700.
14. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501.
15. De Koster, R. (2004). How to assess a warehouse operation in a single tour. Erasmus University, Netherlands.
16. Dobson, G. (1982). Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Mathematics of Operations Research, 7(4), 515-531.
17. De Koster, M. B. M., & Warffemius, P. M. J. (2005). American, Asian and third-party international warehouse operations in Europe: a performance comparison. International Journal of Operations & Production Management, 25(8), 762-780.
18. Dotoli, M., Fanti, M. P., Iacobellis, G., Stecco, G., & Ukovich, W. (2009). Performance analysis and management of an Automated Distribution Center. 2009 35th Annual Conference of IEEE in Industrial Electronics, Porto.
19. Dolgui, A., & Proth, J. M. (2010). Supply Chain Engineering: Useful Methods and Techniques, Springer publishing company.
20. Eisenstein, D. D. (2008). Analysis and optimal design of discrete order picking technologies along a line. Naval Research Logistics 55(4), 350-362.
21. Enright, J., & Wurman, P. R. (2011). Optimization and Coordinated Autonomy in Mobile Fulfillment Systems. Proceedings of the 9th AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, San Francisco.
22. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
23. Flipse, M. (2011). Altering and Improving Kiva: Some suggestions for improvement of the current Kiva system, Vrije Universiteit Amsterdam, Netherlands.
24. Gourdin, K. N. (2001). Global logistics management: a competitive advantage for the new millennium. Blackwell Publishers.
25. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3), 539-549.
26. Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.
27. Grosse, E. H., Glock, C. H., Jaber, M. Y., & Neumann, W. P. (2015). Incorporating human factors in order picking planning models: framework and research opportunities. International Journal of Production Research, 53(3), 695-717.
28. Guizzo, E. (2008). Three engineers, hundreds of robots, one warehouse. IEEE spectrum, 45(7), 26-34.
29. Gilmour, K. (2003). Amazon warehouse, amazon adventure. Retrieved December 11, 2016, from http://www.kimgilmour.com/articles/archive/amazon_warehouse.html.
30. Guan, X., & Dai, X. (2009). Deadlock-free multi-attribute dispatching method for AGV systems. The International Journal of Advanced Manufacturing Technology, 45(5), 603-615.
31. Grosse, E. H., Glock, C. H., & Neumann, W. P. (2016). Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 55(5), 1260-1276.
32. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
33. Goetschalckx, M., & Ratliff, H. D. (1988). An efficient algorithm to cluster order picking items in a wide aisle. Engineering Costs and Production Economics, 13(4), 263-271.
34. Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE transactions, 25(4), 76-87.
35. Hwang, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
36. Hazard, C. J., Wurman, P. R., & D’Andrea, R. (2006). Alphabet soup: A testbed for studying resource allocation in multi-vehicle systems. Proceedings of AAAI Workshop on Auction Mechanisms for Robot Coordination, Boston.
37. Ho, Y. C., & Chien, S. H. (2006). A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs. International journal of production research, 44(20), 4193-4222.
38. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288-300.
39. Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
40. Hong, S., Johnson, A. L., & Peters, B. A. (2015). Quantifying picker blocking in a bucket brigade order picking system. International Journal of Production Economics, 170, 862-873.
41. Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research, 257(1), 185-196.
42. Jones, E. C., & Battieste, T. (2004). Golden retrieval: raising warehouse productivity with ergonomically responsible inventory policies. Industrial Engineer, 36(6), 37-42.
43. Kovačević, N., Erić, M., & Aleksić, N. (2015). The use of automatic guided vehicles in order to increasing the quality of the process of storage of goods. 9th International Quality Conference, Kragujevac.
44. King, R. E., Hodgson, T. J., & Monteith, S. K. (1989). Progress in Materials Handling and Logistics, Springer Berlin Heidelberg.
45. Kim, J., & Klein, C. M. (1996). Location of departmental pickup and delivery points for an AGV system. International Journal of Production Research, 34(2), 407-420.
46. Kuo, R. J., Kuo, P. H., Chen, Y. R., & Zulvia, F. E. (2016). Application of metaheuristics-based clustering algorithm to item assignment in a synchronized zone order picking system. Applied Soft Computing, 46, 143-150.
47. Lee, J., Tangjarukij, M., & Zhu, Z. (1996). Load selection of automated guided vehicles in flexible manufacturing systems. International Journal of Production Research, 34(12), 3383-3400.
48. Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
49. Liu, S., Chan, F. T., & Chung, S. H. (2011). A study of distribution center location based on the rough sets and interactive multi-objective fuzzy decision theory. Robotics and Computer-Integrated Manufacturing, 27(2), 426-433.
50. Liao, T. W., Egbelu, P. J., & Chang, P. C. (2013). Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations. International Journal of Production Economics,141(1), 212-229.
51. Morandin, O., Carida, V. F., Kato, E. R. R., & Fonseca, M. A. S. (2011). A hierarchical fuzzy rule-based building model applied to a AGV dispatching system in an FMS. 2011 IEEE International Conference on Robotics and Automation, Shanghai.
52. Ma, X., Yin, Y., & Liu, T. (2011). The simulation and optimizing of different distribution strategies for the distribution centre based on Flexsim. 2011 IEEE International Conference on Automation and Logistics, Chongqing.
53. Ozden, M. (1988). A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system. The International Journal Of Production Research, 26(8), 1353-1366.
54. Petersen, C. G., & Aase, G. (2004). A comparison of picking, storage, and routing policies in manual order picking. International Journal of Production Economics, 92(1), 11-19.
55. Parikh, P. J., & Meller, R. D. (2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research Part E: Logistics and Transportation Review, 44(5), 696-719.11.
56. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management, 17(11), 1098-1111.
57. Pan, J. C. H., Shih, P. H., & Wu, M. H. (2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57, 238-248.
58. Rao, S. S., & Adil, G. K. (2013). Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems. International Journal of Production Research, 51(16), 4979-4996.
59. Song, S., Li, A., & Xu, L. (2008). AGV Dispatching strategy based on theory of constraints. 2008 IEEE Conference on . Robotics, Automation and Mechatronics, Chengdu.
60. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
61. Thomas, R.J., Kass, A., and Davarzani, L., (2012), Recombination at amazon and kiva systems : balancing human and machine capabilities, Retrieved December 20, 2016, from https://zh.scribd.com/document/325111766/Accenture-Impact-Of-Tech-AmazonKiva-pdf.
62. Tanchoco, J. M. A. (1994).Material flow systems in manufacturing, Springer publishing company.
63. Taljanovic, K., & Salihbegovic, A.(2009). A new strategies in picking from the forward pick locations. 2009. XXII International Symposium on Information, Communication and Automation Technologies, Bosnia.
64. Tam, D., (2014), Meet Amazon’s busiest employee – the Kiva robot. Retrieved December.20, 2016, from http://www.cent.com/news/meet-amazons-busiest-
employee-the-kiva-robot/.
65. van den Berg, J. P., & Zijm, W. H. M. (1999). Models for warehouse management: Classification and examples. International Journal of Production Economics, 59(1), 519-528.
66. Wulfraat, M.,(2013). 5 ways to improve order picking productivity, Retrieved December 24, 2016, from http://www.supplychain247.com/article/5_ways_to_improve_order_picking_productivity/MWPVL_International.
67. Wurman, P. R., Andrea, R.D., & Mountz, M.(2008). Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI magazine, 29(1), 9.
68. Wulfraat, M. (2012). Is Kiva Systems a Good Fit for Your Distribution Center, Retrieved November 25, 2016, from http://www.mwpvl.com/html/kiva_systems.html.
69. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), 115-152.
70. Wu, Y., & Dong, M. (2008). Combining multi-class queueing networks and inventory models for performance analysis of multi-product manufacturing logistics chains. The International Journal of Advanced Manufacturing Technology, 37(5), 564-575.
71. Yang, L. R., & Chen, J. H. (2012). Information systems utilization to improve distribution center performance: From the perspective of task characteristics and customers. Advances in Information Sciences and Service Sciences, 4(1), 230-238.
72. Zamiri Marvizadeh, S., & Choobineh, F. F. (2014). Entropy-based dispatching for automatic guided vehicles. International Journal of Production Research, 52(11),3303-3316.
指導教授 何應欽 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明