博碩士論文 104324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.141.31.209
姓名 王姿妤(Tzu-Yu Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含界面活性劑液滴在SBSi表面上的特殊行為
(Exotic wetting behavior of surfactant drops on SBSi)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗將(N,N-Dimethylaminopropyl)trimethoxysilane和1,3-Propanesultone反應製備出雙離子型磺基甜菜鹼矽烷(Sulfobetaine silane,SBSi),經水解縮合後將SBSi修飾在玻璃基材上,根據先前的實驗[1],純溶液(除了二碘甲烷)皆會在此表面展現完全潤濕現象。根據文獻指出,雙離子型高分子水合能力很好,因此藉由改變環境溼度探討雙離子表面水分子數量是否受影響,並使用內聚力強且在SBSi表面上展現部分潤濕行為的二碘甲烷,將液體滴在不同環境濕度下的SBSi表面,利用影像式接觸角量測儀可以很明顯地觀察到接觸角的改變。SBSi表面的水分子含量不同也會影響自釘扎(self-pinning)液體的擴張面積。也探討了純溶液(水、正十六烷)在不同環境濕度下的擴張行為,在高濕度的環境下,液體在初始面積與初始擴張速度皆會較大,藉此得知表面水分子量越多,液體越容易向外擴張。
另外,先前的文獻只探討了添加低(非)揮發性溶質水溶液在SBSi基材上的行為[1],但並未討論過含界面活性劑液滴在基材上的行為,因此此篇論文會探討不同帶電性的界面活性劑液滴在SBSi表面上的行為。陽離子型界面活性劑會在表面產生去潤濕現象(Dewetting);陰離子型和非離子型界面活性劑皆會產生fingering現象。而以上的現象只在含有水分子的SBSi上才會展現,且亦會隨著水分子數量的不同,而展現不同程度的fingering現象,然而在無水分子層的SBSi表面上則只會展現完全潤濕行為。
摘要(英)
The total wetting surface which is a kind of zwitterionic surface is fabricated by grafting the sulfobetain silane (SBSi) on glass slices. It is considered that there is a water film on the surface because of highly hydrate chemical groups. It can be observed different contact angle with dropping diiodomethane on SBSi which is in different relative humidity (RH). With increasing the relative humidity, the contact angle is larger in the reason that diiodomethane is insoluble in water. The other indirect evident is that the maximum wetting area of water drops on SBSi surface grows because more equilibrium water molecules bring benefits to the spreading of liquid. In the same ambient, it is observed the enormously different behavior between wet and dry surface no matter which electric charge surfactant droplets drop on the SBSi surface. When the liquid droplets drop on the SBSi surface containing a water film in the atmosphere, the droplets show the different behaviors depending on the electric charge of surfactant. Experiments show that droplets of cationic surfactant on SBSi surface present the phenomena of dewetting, because surfactant ions would be adsorbed on the SBSi surface. However, the droplets tend to stick on the dry surface and the contact angle of drops is about 40. For the case of anionic and nonionic surfactant, it shows the fingering pattern on the wet SBSi surface and the wetting behavior on the dry one.  
關鍵字(中) ★ 磺基甜菜鹼
★ 界面活性劑
關鍵字(英) ★ sulfobetaine silane
★ surfactant
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-1-1 界面活性劑 [2, 3] 1
1-2 基本原理 8
1-2-1 部分潤濕現象 (Partial wetting phenomena) [10] 8
1-2-2 接觸角遲滯 14
1-2-3 去潤濕現象 (Dewetting) 20
1-2-4 完全潤濕現象 (Total wetting) 21
1-2-5 拉午耳定律 (Raoult’s Law) 26
1-2-6 咖啡圈環效應 [23, 24] 27
1-3 雙離子表面之文獻回顧 28
1-3-1 抗非特定吸附沾黏之簡介 [25, 26] 28
1-3-2 雙離子性材料 (Zwitterionic material) 30
第二章 實驗步驟及方法 39
2-1 實驗藥品 39
2-2 實驗儀器及軟體 40
2-3 儀器原理 41
2-3-1 巨觀放大顯微量測系統 41
2-3-2 光學顯微鏡 41
2-3-3 影像式接觸角量測儀 42
2-3-4 電漿表面清潔機 (Basic Plasma Cleaner) 43
2-4 實驗步驟及方法 45
2-4-1 製備磺基甜菜鹼矽烷 (SBSi) [33] 45
2-4-2 製備超親水雙離子型基材 [33] 46
2-5 低接觸角分析分法 47
2-5-1 液滴面積的分析 47
2-5-2 以球帽公式(Spherical Cap)估計接觸角 48
第三章 液滴在SBSi表面之潤濕行為:濕度效應 50
3-1 SBSi表面溼度控制 50
3-1-1 探討濕度效應對部分潤濕液體-二碘甲烷的影響 51
3-1-2 探討濕度效應對自釘扎液體-右旋糖酐(Dextran)的影響 52
3-2 正十六烷的自發性擴張 55
3-2-1 正十六烷在乾濕處理表面的擴張行為 56
3-2-2 環境濕度對正十六烷在基材上潤濕行為的影響 59
3-3 水的自發性擴張 60
3-3-1 水在乾濕處理表面的擴張行為 60
3-3-2 環境濕度對水在基材上潤濕行為的影響 62
第四章 含陽離子型界劑液滴在SBSi基材上的行為 66
4-1 含低(非)揮發性溶質之液滴 66
4-2 SBSi表層水分子對含陽離子型界劑液滴的影響 66
4-2-1 乾SBSi表面 67
4-2-2 濕SBSi表面 68
4-3 含DTAB分子的SBSi表面 71
4-4 DTAB水溶液在SBSi表面上的遲滯行為 73
第五章 含陰(非)離子型界劑液滴在SBSi基材上的行為 75
5-1 含陰離子型界劑液滴的fingering行為 75
5-1-1 濕SBSi表面 75
5-1-2 乾SBSi表面 77
5-1-3 濕度的影響 78
5-2 含非離子型界劑液滴在SBSi表面的行為 79
5-2-1 含brij 35液滴 79
5-2-2 環境溼度對fingering的影響 85
第六章 結論 87
第七章 參考文獻 89
參考文獻

1. 許毓蘭, 液滴在完全潤濕的磺基甜菜鹼表面之潤濕現象:自釘扎與無遲滯, in Department of Chemical and Material Engneering. 2016, National Central University.
2. Krister Holmberg, B.J., Bengt Kronberg, Björn Lindman, Surfactants and Polymers in Aqueous Solution. 2002: John Wiley & Sons, Ltd.
3. 林昭榮, 特殊的界面活性劑與異常的潤濕現象, in Department of Chemical and Material Engneering. 2008, National Central University.
4. Aguiar, J., et al., On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. Journal of Colloid and Interface Science, 2003. 258(1): p. 116-122.
5. L. Tennouga, A.M., K. Medjahed, A. Chetouani, I. Warad, The micelle formation of cationic and anionic surfactants in aqueous medium : Determination of CMC and thermodynamic parameters at different temperatures. Journal of Materials and Enviromental Science, 2015. 6 (10): p. 2711-2716.
6. E. Weiss, K.G.-S., A. Savall, Electrochemical Detergent of Sodium Dodecylbenzene Sulfonate on Boron Doped Diamon and Lead Dioxide Anodes. Journal of New Materials for Electrochemical System, 2006. 9: p. 249-256.
7. K. L. Mittal, D.O.S., Adsorption and Aggregation of Surfactants in Solution.pdf. Surfactant science series. Vol. 109. 2005: Marcel Dekker, Inc.
8. Kust, P.R. and J.F. Rathman, Synthesis of Surfactants by Micellar Autocatalysis - N,N-Dimethyldodecylamine N-Oxide. Langmuir, 1995. 11(8): p. 3007-3012.
9. Bernardez, L.A., Investigation on the locus of solubilization of polycyclic aromatic hydrocarbons in non-ionic surfactant micelles with H-1 NMR spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 324(1-3): p. 71-78.
10. Gennes, P.-G.d., F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena : Drops, Bubbles, Pearls, Waves. 2002: Springer.
11. Adam, N.K., Use of the Term ‘Young′s Equation’ for Contact Angles. Journal of Nature and Science, 1957. 180(4590): p. 809-810.
12. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 1936. 28(8): p. 988-994.
13. Cassie, A.B.D. and S. Baxter, Cassie Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
14. Joanny, J.F. and P.G. de Gennes, A model for contact angle hysteresis. The Journal of Chemical Physics, 1984. 81(1): p. 552-562.
15. Yamada, S. and J. Israelachvili, Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. Journal of Physical Chemistry B, 1998. 102(1): p. 234-244.
16. Kheshgi, H.S. and L.E. Scriven, Dewetting - Nucleation and Growth of Dry Regions. Chemical Engineering Science, 1991. 46(2): p. 519-526.
17. Vossen, J.L., The preparation of substrates for film deposition using glow discharge techniques. Journal of Physics E : Scientific Instruments, 1979. 12: p. 159-167.
18. Muller, P., G. Sudre, and O. Theodoly, Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Langmuir, 2008. 24(17): p. 9541-9550.
19. MacCallum, N., et al., Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science & Engineering, 2015. 1(1): p. 43-51.
20. Tanner, L.H., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D : Applied Physics, 1979. 12: p. 1473-1484.
21. Fowkes, F.M., Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. journal of physical Chemistry 1962. 66: p. 382.
22. Suzuk, T. and Y. Yamada, Dispersion and Polar Component of Specific Surface Free Energy of NaCl(100), KCl(100), and KBr(100) Single Crystal Surfaces. Journal of Crystallization Process and Technology, 2015. 05(03): p. 43-47.
23. Deegan, R.D., et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997. 389(6653): p. 827-829.
24. Hu, H. and R.G. Larson, Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 2006. 110(14): p. 7090-7094.
25. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 2014. 46(8): p. 436-443.
26. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
27. Zwaal, R.F.A. and A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 1997. 89(4): p. 1121-1132.
28. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
29. Zhang, Z., et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
30. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
31. Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir, 2010. 26(22): p. 16884-9.
32. Yeh, S.B., et al., Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties. Langmuir, 2014. 30(38): p. 11386-11393.
33. Huang, K.T., S.B. Yeh, and C.J. Huang, Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation. Acs Applied Materials & Interfaces, 2015. 7(38): p. 21021-21029.
34. Rockland, L.B., Saturated salt solutions for Static Control of Relative Humidity between 5 and 40 degree C. Journal of Analytical Chemistry, 1960. 32(10): p. 1375-1376.
35. Weon, B.M. and J.H. Je, Self-pinning by colloids confined at a contact line. Phys Rev Lett, 2013. 110(2): p. 028303.
36. Wu, C.-J., et al., Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. RSC Adv., 2016. 6(30): p. 24827-24834.
37. Frank, B. and S. Garoff, Temporal and Spatial Development of Surfactant Self-Assemblies Controlling Spreading of Surfactant Solutions. Langmuir, 1995. 11(11): p. 4333-4340.
38. Stoebe, T., et al., Enhanced spreading of aqueous films containing ionic surfactants on solid substrates. Langmuir, 1997. 13(26): p. 7276-7281.
39. Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, Dewetting behavior of aqueous cationic surfactant solutions on liquid films. Langmuir, 2004. 20(18): p. 7575-7582.
40. Frank, B. and S. Garoff, Surfactant self-assembly near contact lines: Control of advancing surfactant solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1996. 116(1-2): p. 31-42.
41. Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, The spreading of surfactant solutions on thin liquid films. Advances in Colloid and Interface Science, 2003. 106: p. 183-236.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2017-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明