博碩士論文 104324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.133.130.70
姓名 李建億(Jian-Yi Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
(The effect of revising the temperature dependence of dispersion term and volume parameter on phase equilibrium predictions from PR+COSMOSAC)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡
★ 常壓下乙酸酯類之雙成份混合物汽液相平衡★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構
★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響★ 預測固體溶質於超臨界二氧化碳中的溶解度
★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測
★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑★ 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對化學工程、製藥工程、環境工程、運輸工程或其他與化學相關產業而言,純物質與混合物的熱力學性質,如:蒸氣壓在研發、製程設計、最適化甚至於生命財產安全上有其一定的需求及應用。近年來Hsieh與Lin開發一個結合Peng-Robinson狀態方程式與COSMO-SAC活性係數模型[本文以PR+COSMOSAC(2010)表示之]的方法,此方法在不需要任何與物質相關的參數或實驗數據下,透過量子力學與COSMO-SAC計算,獲得PR-EOS中的能量參數a與體積參數b後,即可用來預測純物質熱力學性質,如:蒸氣壓、昇華壓、臨界性質,亦可預測多成份系統之相平衡,甚至可應用至超臨界流體的系統以及藥物溶解度。
本研究發現將分散項自由能對溫度取自然對數作圖的線性關係會較分散項自由能對溫度的一次方作圖之線性關係來的高,故第一部分針對PR+COSMOSAC(2010)裡的分散項自由能中的溫度函數進行修正,並以三組不同區間的蒸氣壓實驗值來探討實驗值對優化分散項參數之效應;此外,因PR+COSMOSAC所計算出的體積參數與Peng-Robinson狀態方程式所計算出的體積參數存在著多項式關係,故第二部分則探討體積參數修正之效應。結合此兩部分之結果提出PR+COSMOSAC(2017)模型,藉此改善PR+COSMOSAC模型於純物質的蒸氣壓預測精確度並以此方法預測純物質性質與雙成份之氣-液相平衡,包含1125個純物質蒸氣壓(ALD-P = 0.199)、1140個純物質昇華壓(ALD-P = 0.679)、435個純物質臨界溫度(AARD = 4.8%)、351個純物質臨界壓力(AARD = 8.1%)、283個純物質臨界體積(AARD = 18.05%)、1405個純物質沸點(AAD = 14.86 K)、1118個雙成份氣-液相平衡系統(AARD-P = 22.4%、AAD-y1 = 9.2%),並將預測結果與PR+COSMOSAC(2010)及PR+COSMOSAC(2015)之預測結果進行比較,結果顯示除了臨界溫度、臨界體積、與雙成份氣-液相平衡系統組成預測外,PR+COSMOSAC(2017)預測結果皆優於前兩個版本的模型。
摘要(英)
The knowledge of thermodynamic properties and phase behavior for pure substances and mixtures over a wide range of temperature and pressure is of importance not only for engineers to design, develop and optimize the equipment and processes in chemical and related industries but for the safety of our daily life and environmental protection. Recently, Hsieh and Lin proposed a method PR+COSMOSAC(2010) which utilizes quantum mechanical and COSMO solvation calculations to obtain the parameters in PR EOS. This method has been applied to predict several types of phase equilibrium, such as VLE, SVE or supercritical fluid systems.
The first part of this work is to revise the dispersion energy term (〖∆▁G_i〗^(*dsp)) of PR+COSMOSAC(2010) because the linearity between 〖∆▁G_i〗^(*dsp) and natural logarithm of temperature is better than that between 〖∆▁G_i〗^(*dsp) and temperature. Then, three different sets of dispersion parameters are obtained by the regression of three different regions of vapor pressure data to study which one can provide the lowest deviation of vapor pressure prediction. The second part is to investigate the effect of the modified volume parameter on vapor pressure prediction because a polynominal relationship is found between bPR and Vi,COSMO. Finally, the PR+COSMOSAC(2017) is proposed on the basis of the results in the first two parts. Moreover, we compare the prediction deviation of vapor pressures for 1125 pure substances (ALD-P = 0.199), sublimation pressures for 1140 pure substances (ALD-P = 0.679), critical properties (AARD-Pc = 8.1%, AARD-Tc = 4.8% and AARD-Vc = 18.05% for 351, 435 and 283 pure substances, respectively) and VLE for 1118 binary systems (AARD-P = 22.4% and AAD-y1 = 9.2%) from PR+COSMOSAC(2017) with those from PR+COSMOSAC(2010) and PR+COSMOSAC(2015). The results show that the prediction accuracy of PR+COSMOSAC(2017) is superior to the versions of 2010 and 2015 except for the critical temperature, critical volume and the vapor phase composition of binary VLE systems.
關鍵字(中) ★ Peng-Robinson+COSMOSAC狀態方程式 關鍵字(英) ★ Peng-Robinson+COSMOSAC Equation of State
論文目次
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 飽和蒸氣壓 1
1-2 文獻回顧 2
1-3 研究動機 10
1-4 論文組織與架構 11
第二章 原理與計算 12
2-1 Peng-Robinson+COSMOSAC(2010) 12
2-2 Peng-Robinson+COSMOSAC(2017) 18
2-3 純物質蒸氣壓計算 23
2-4 臨界性質計算 25
2-5 純物質昇華壓計算 26
2-6 雙成份氣-液相平衡計算 27
第三章 參數優化 29
3-1 計算細節 29
3-2 參數優化 29
3-2-1 各原子參數優化之流程 31
第四章 結果與討論 33
4-1 以三組不同蒸氣壓數據優化分散項自由能參數 34
4-2修正體積參數b 40
4-3 純物質性質預測 50
4-3-1 蒸氣壓預測 50
4-3-2 昇華壓預測 58
4-3-3 臨界點與沸點預測 64
4-4 雙成份氣-液相平衡 70
第五章 結論 73
參考文獻 74
附錄(一) 參數優化所用物質 79
附錄(二) 各方法參數表 82
參考文獻

[1] H. Pichler, J. Lutz, “Why crude oil vapor pressure should be tested prior to rail transport ”, Advances in Petroleum Exploration and Development, Vol 7, 58-63, 2014.
[2] W. F. Spencer, M. M. Cliath, Measurement of pesticide vapor pressures. In residue reviews: Residues of pesticides and other contaminants in the total environment, Gunther, F. A.; Gunther, J. D., Eds. Springer New York: New York, 1983; pp 57-71.
[3] H. Östmark, S. Wallin, H. G. Ang, “Vapor pressure of explosives: A critical review ”, Propellants Explos. Pyrotech., Vol 37, 12-23, 2012.
[4] H. Dong, C. Wu, X. Yang, H. Qiu, “Measurement and correlation of saturated vapor pressure of 2,4,6,8,10-pentamethylcyclopentasiloxane by means of an inclined ebulliometer ”, Thermochim Acta, Vol 483, 66-69, 2009.
[5] B. An, Y. Duan, L. Tan, Z. Yang, “Vapor pressure of HFE 7100 ”, J. Chem. Eng. Data, Vol 60, 1206-1210, 2015.
[6] L. Sahraoui, K. Khimeche, A. Dahmani, I. Mokbel, J. Jose, “Experimental vapor pressures (from 1 pa to 100 kpa) of six saturated fatty acid methyl esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate ”, J. Chem. Thermodyn., Vol 102, 270-275, 2016.
[7] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, “New reference equation of state for associating liquids ”, Ind. Eng. Chem. Res., Vol 29, 1709-1721, 1990.
[8] S. H. Huang, M. Radosz, “Equation of state for small, large, polydisperse, and associating molecules ”, Ind. Eng. Chem. Res., Vol 29, 2284-2294, 1990.
[9] J. Gross, G. Sadowski, “Perturbed-chain SAFT:  An equation of state based on a perturbation theory for chain molecules ”, Ind. Eng. Chem. Res., Vol 40, 1244-1260, 2001.
[10] J. Gross, G. Sadowski, “Application of the perturbed-chain SAFT equation of state to associating systems ”, Ind. Eng. Chem. Res., Vol 41, 5510-5515, 2002.
[11] N. I. Diamantonis, I. G. Economou, “Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration ”, Energy Fuels, Vol 25, 3334-3343, 2011.
[12] N. Ferrando, J.-C. de Hemptinne, P. Mougin, J.-P. Passarello, “Prediction of the PC-SAFT associating parameters by molecular simulation ”, J. Phys. Chem. B, Vol 116, 367-377, 2012.
[13] M. Umer, K. Albers, G. Sadowski, K. Leonhard, “PC-SAFT parameters from ab initio calculations ”, Fluid Phase Equilib, Vol 362, 41-50, 2014.
[14] N. Van Nhu, M. Singh, K. Leonhard, “Quantum mechanically based estimation of perturbed-chain polar statistical associating fluid theory parameters for analyzing their physical significance and predicting properties ”, J. Phys. Chem. B, Vol 112, 5693-5701, 2008.
[15] T. Jensen, A. Fredenslund, P. Rasmussen, “Pure-component vapor pressures using UNIFAC group contribution ”, Ind. Eng. Chem. Fundam., Vol 20, 239-246, 1981.
[16] A. Fredenslund, P. Rasmussen, “Correlation of pure component Gibbs energy. Using UNIFAC group contribution ”, AIChE J, Vol 25, 203-205, 1979.
[17] W. E. Asher, J. F. Pankow, G. B. Erdakos, J. H. Seinfeld, “Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods ”, Atmos. Environ., Vol 36, 1483-1498, 2002.
[18] W. E. Asher, J. F. Pankow, “Vapor pressure prediction for alkenoic and aromatic organic compounds by a UNIFAC-based group contribution method ”, Atmos. Environ., Vol 40, 3588-3600, 2006.
[19] M. Rezakazemi, A. Marjani, S. Shirazian, “Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds ”, Chem. Eng. Technol., Vol 36, 483-491, 2013.
[20] K. G. Joback, R. C. Reid, “Estimation of pure-component properties from group-contributions ”, Chem. Eng. Commun., Vol 57, 233-243, 1987.
[21] D. Ambrose, “Correlation and estimation of vapour-liquid critical properties. Part 1: Critical temperatures of organic compounds ”, 1978.
[22] A. Horvath, “Molecular design: Chemical structure generation from the properties of pure organic compounds ”, 1992.
[23] L. Constantinou, R. Gani, “New group contribution method for estimating properties of pure compounds ”, AIChE J, Vol 40, 1697-1710, 1994.
[24] J. Marrero, R. Gani, “Group-contribution based estimation of pure component properties ”, Fluid Phase Equilib, Vol 183, 183-208, 2001.
[25] J. Marrero-Morejón, E. Pardillo-Fontdevila, “Estimation of pure compound properties using group-interaction contributions ”, AIChE J, Vol 45, 615-621, 1999.
[26] X. Wen, Y. Qiang, “A new group contribution method for estimating critical properties of organic compounds ”, Ind. Eng. Chem. Res., Vol 40, 6245-6250, 2001.
[27] Y. Nannoolal, J. Rarey, D. Ramjugernath, “Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions ”, Fluid Phase Equilib, Vol 269, 117-133, 2008.
[28] F. Gharagheizi, A. Eslamimanesh, P. Ilani-Kashkouli, A. H. Mohammadi, D. Richon, “Determination of vapor pressure of chemical compounds: A group contribution model for an extremely large database ”, Ind. Eng. Chem. Res., Vol 51, 7119-7125, 2012.
[29] T.-Y. Wang, X.-Z. Meng, M. Jia, X.-C. Song, “Predicting the vapor pressure of fatty acid esters in biodiesel by group contribution method ”, Fuel Process. Technol., Vol 131, 223-229, 2015.
[30] R. Ceriani, R. Gani, Y. A. Liu, “Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution ”, Fluid Phase Equilib, Vol 337, 53-59, 2013.
[31] C. Liang, D. A. Gallagher, “QSPR prediction of vapor pressure from solely theoretically-derived descriptors ”, J. Chem. Inf. Comput. Sci., Vol 38, 321-324, 1998.
[32] D. Yaffe, Y. Cohen, “Neural network based temperature-dependent quantitative structure property relations (QSPRs) for predicting vapor pressure of hydrocarbons ”, J. Chem. Inf. Comput. Sci., Vol 41, 463-477, 2001.
[33] B. E. Turner, C. L. Costello, P. C. Jurs, “Prediction of critical temperatures and pressures of industrially important organic compounds from molecular structure ”, J. Chem. Inf. Comput. Sci., Vol 38, 639-645, 1998.
[34] G. Ding, M. Shao, J. Zhang, J. Tang, W. J. G. M. Peijnenburg, “Predictive models for estimating the vapor pressure of poly- and perfluorinated compounds at different temperatures ”, Atmos. Environ., Vol 75, 147-152, 2013.
[35] M. Goodarzi, L. dos Santos Coelho, B. Honarparvar, E. V. Ortiz, P. R. Duchowicz, “Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides ”, Ecotoxicol. Environ. Saf., Vol 128, 52-60, 2016.
[36] S.-T. Lin, S. I. Sandler, “A priori phase equilibrium prediction from a segment contribution solvation model ”, Ind. Eng. Chem. Res., Vol 41, 899-913, 2002.
[37] S.-T. Lin, J. Chang, S. Wang, W. A. Goddard, S. I. Sandler, “Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model ”, J. Phys. Chem. A, Vol 108, 7429-7439, 2004.
[38] S. Wang, S. I. Sandler, C.-C. Chen, “Refinement of COSMO−SAC and the applications ”, Ind. Eng. Chem. Res., Vol 46, 7275-7288, 2007.
[39] C.-M. Hsieh, S. I. Sandler, S.-T. Lin, “Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions ”, Fluid Phase Equilib, Vol 297, 90-97, 2010.
[40] C.-M. Hsieh, S.-T. Lin, J. Vrabec, “Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior ”, Fluid Phase Equilib, Vol 367, 109-116, 2014.
[41] R. Xiong, S. I. Sandler, R. I. Burnett, “An improvement to COSMO-SAC for predicting thermodynamic properties ”, Ind. Eng. Chem. Res., Vol 53, 8265-8278, 2014.
[42] C.-M. Hsieh, S.-T. Lin, “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations ”, AIChE J, Vol 54, 2174-2181, 2008.
[43] C.-M. Hsieh, S.-T. Lin, “First-principles predictions of vapor−liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations ”, Ind. Eng. Chem. Res., Vol 48, 3197-3205, 2009.
[44] C.-M. Hsieh, S.-T. Lin, “Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state ”, Chem. Eng. Sci., Vol 65, 1955-1963, 2010.
[45] L.-H. Wang, C.-M. Hsieh, S.-T. Lin, “Improved prediction of vapor pressure for pure liquids and solids from the PR+COSMOSAC equation of state ”, Ind. Eng. Chem. Res., Vol 54, 10115-10125, 2015.
[46] D.-Y. Peng, D. B. Robinson, “A new two-constant equation of state ”, Ind. Eng. Chem. Fundam., Vol 15, 59-64, 1976.
[47] B. Delley, “An all‐electron numerical method for solving the local density functional for polyatomic molecules ”, J. Chem. Phys., Vol 92, 508-517, 1990.
[48] E. Mullins, R. Oldland, Y. A. Liu, S. Wang, S. I. Sandler, C.-C. Chen, M. Zwolak, K. C. Seavey, “Sigma-profile database for using COSMO-based thermodynamic methods ”, Ind. Eng. Chem. Res., Vol 45, 4389-4415, 2006.
[49] E. Mullins, Y. A. Liu, A. Ghaderi, S. D. Fast, “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods ”, Ind. Eng. Chem. Res., Vol 47, 1707-1725, 2008.
[50] DIPPR, “DIPPR801 thermodynamic properties database ”, Brigham Young University, Provo, Vol 2008.
[51] W.-L. Chen, C.-C. Hsu, S.-T. Lin, “Prediction of phase behaviors of acetic acid containing fluids ”, Fluid Phase Equilib, Vol 353, 61-68, 2013.
[52] Gmehling, J.; Onken, U.; Arlt, W.; Grenzheuser, P.; Weidlich,U.; Kolbe, B.; Rarey, J.Vapor-Liquid Equilibrium Data Collection;DECHEMA: Frankfurt, 1982-2002; Vol. I.
[53] Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection;
DECHEMA: Frankfurt, 1977
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2017-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明