參考文獻 |
1. NCD-RisC, Worldwide trends in diabetes since 1980: a pooled analysis of 751
population-based studies with 4.4 million participants. The Lancet, 2016. 387(10027):
p. 1513-1530.
2. IDF, Diabetes Atlas, 7 Editor. 2015.
3. In vitro diagnostic test systems -- Requirements for blood-glucose monitoring systems
for self-testing in managing diabetes mellitus, I. 15197, Editor. 2013, ISO/TC 212
Clinical laboratory testing and in vitro diagnostic test systems: 2.
4. Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use; Draft
Guidance for Industry and Food and Drug Administration Staff; Availability. 2014,
Food and Drug Administration, HHS.
5. 張慈映, 血糖計市場分析. 工研院 IEK
6. 譯者:王誠之, M.C., 梅約醫學中心:糖尿病. 2002, 台灣: 天下生活.
7. T. C., P.H., B. T., S. V., G. M., F. T., and P. A., Accuracy evaluation of five blood
glucose monitoring systems obtained from the pharmacy: a European multicenter
study with 453 subjects. Diabetes Technol Ther., 2012. 4.
8. 黃莉棋、陳瑜忻、李治中、林慶齡, 由最新的國際標準規格看血糖機精準的必要
性與影響檢測準確的因素. 內科學誌, 2016. 27: p. 239-247.
9. 一之瀨昇, 小.陳., 曹永偉編譯, 感測器原理與應用技術. 測定儀器 - 技術, ed.
二版. 民85: 全華科技.
10. 高士軒、翁艾慧, 臨床醫療生物感測器發展及技術應用. 化工, 2014. 5(61): p.
70-78.
11. 陳詩喆、李嘉平, 電流式葡萄糖生物感測器之製程及測試, in 化學工程系. 民98,
國立台灣科技大學.
12. M. A., T.S., K. F., J. S. and S. S. Proceedings of the International Meeting of
Chemical Sensors, Fukuoka, Elsevier, Amsterdam. in International Meeting on
Chemical Sensors. 1983. Denki Kagaku Kyōkai (Japan).
13. 田蔚城, 生物技術, ed. 初版. 民85, 臺北市: 眾光出版.
14. V. P., a.U.H., Advances in biosensors: Principle, architecture and applications.
Journal of Applied Biomedicine, 2013. 12(1): p. 1-15.
15. S. F, S.F., P. D, H. R, D. I, R. R, W. U, R. K, P. M, K. M, et al., Research and
development of biosensors : a review. . Analyst, 1989. 114(6): p. 653-662.
16. L.C. C., a.C.L., Electrode Systems for Continuous Monitoring in CardiovascularSurgery. Ann. NY. Acad. Sci., 1962. 102: p. 29-45.
17. T.Z. W., H.H.W., and L.-C. A., Gene probe biosensor coated Piezoelectric for
biochemical analysis. Chinese J. Microbial. Immunol., 1989. 23(2): p. 147-154.
18. G., G.G., Determination of formaldehyde with an enzyme-coated piezoelectric crystal
detector. Anal. Chem., 1983. 55: p. 1682-1684.
19. C. S., a.I.W., Calorimetry as an analytical tool in biochemistry and biology. Methods
Biochem Anal., 1976. 23(0): p. 1-159.
20. G., J.K., Analytical Solution Calorimetry. 1985, New York Wiley.
21. K. R., a.B.D., Principles and applications of thermal biosensors. Biosensors and
Bioelectronics, 2001. 16(6): p. 417-423.
22. Y. W., H.X., and J. Z. G. L., Electrochemical Sensors for Clinic Analysis. Sensors,
2008. 8(4): p. 2043-2081.
23. M. Y., G.J., and C. J., Ion Sensitive Field Effect Transducer-based Biosensors.
Biotechenol. Adv., 2003. 21(6): p. 527–534.
24. S., D., MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS
Nano, 2014. 8(4): p. 3992-4003.
25. d. M. NJ, F.M., Surface Plasmon Resonance: A General Introduction. Mehods Mol.
Biol., 2010. 627: p. 1-14.
26. A., I., Handbook of Biosensors and biochips. Overview of Optical Biosensing
Techniques. 2008, New York, U.S.A.: John Wiley & Sons.
27. L., B., Current Status of Micro- and Nano-Structured Optical Fiber Sensors. Optical
Fiber Tech., 2009. 15(3): p. 209-221.
28. F. L., a.C.T., Optical Biosensors: Present & Future. Optrode-based fiber optic
biosensors. 2002: Elsevier Science.
29. S. S., Y.Z., W. Z., P. L., J. H., and G. L., Surface stress-based biosensors. Biosens
Bioelectron., 2014. 51(15): p. 124-135.
30. L. N., M.G., F. C., P. R., S. H., E. T., J.-M. F., J.-P. M., A.-M. C., E. C., and C. B.,
Resonating piezoelectric membranes for microelectromechanically based bioassay:
detection of streptavidin–gold nanoparticles interaction with biotinylated DNA.
Sensors and Actuators B: Chemical, 2005. 110(1): p. 125-136.
31. M.Y., S.B., and B. D., The enzyme thermistor—A realistic biosensor concept. A
critical review. Analytica Chimica Acta, 2013. 766(5): p. 1-12.
32. W., J., Electrochemical Glucose Biosensors. Chem. Rev., 2008. 108(2): p. 814–825.
33. A. P.F. T., B.C., and S. A. P., In Vitro Diagnostics in Diabetes: Meeting the
Challenge. Clinical Chemistry, 1999. 45(9): p. 1596–1601.
34. B., F.-G., Chemical Sensors and Biosensors: Fundamentals and Applications. 2012:
John Wiley & Sons.
35. P., I.V., Of the Mechanism Governing the Growth of Electrolessly Deposited
Nickel–Phosphorus Coatings. Russian Journal of Electrochemistry, 2007. 43(1): p.
34-41.
36. H. L., N.L., S. B., and D. L., Gold Immersion Deposition on Electroless Nickel
Substrates. Journal of The Electrochemical Society, 2007. 154(12): p. 662-668.
37. 林定皓, 多層與高密度電路板全覽. 2002, 桃園市: 亞洲智識科技.
38. J.A. O., a.F.L.H., A Study of the Off-Contact Screen Printing Process- Part I: Mode
of the Printing Process and Some Results Derived From Experiments. Browse
Journals & Magazines, 1990. 13(2): p. 358-367.
39. 施敏;李明逵, 半導體元件物理與製作技術. 2013: 交大出版社.
40. M., M.J., Manufacturing Techniques for Microfabrication and Nanotechnology., ed. 3.
2011: CRC Press.
41. B., A.R., Optical Issues in Photolithography, in OpenStax-CNX module. 2009. p. 1-5.
42. 胡啓章, 電化學原理與方法. 2011, 臺北市: 五南.
43. A. J. B., a.L.R.F., Electrochemical Methods: Fundamentals and Applications., ed. 2.
2001, New York: Wiley. |