博碩士論文 104324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.220.43.139
姓名 蔡凱傑(Kai-Jie Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銀對二氧化鈦二氧化矽溶膠之光催化活性及抗菌性影響
(Silver-doped titania-silica for photocatalytic and antibacterial reactions)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦是一種可以將有害的有機化合物降解成水和二氧化碳的光催化劑。 在本研究中,二氧化鈦是溶膠凝膠法(sol-gel method)製備而成的。製備過程中以四氯化鈦為前驅物,過氧化氫為膠溶劑,在95℃下從氫氧化鈦水溶液轉化成具有二氧化鈦納米粒子的凝膠。加入銀是為了提高二氧化鈦的穩定性、可見光範圍的效率和抗菌能力。最後將二氧化矽加入到銀-二氧化鈦溶膠中來降低顆粒的凝聚現象與提高溶膠的穩定性和透射率。本研究的目的是加入銀將二氧化鈦二氧化矽溶膠改質,用於提高溶膠穩定性、增加在紫外光和可見光照射下光催化活性,以及高抗菌力。XRD和HRTEM證實可得到樣品的晶格距離所對應的是二氧化鈦的銳鈦礦相。通過DLS和HRTEM測量粒徑。在紫外光和可見光照射下,二氧化鈦-二氧化矽和銀-二氧化鈦-二氧化矽的溶膠與薄膜對亞甲基藍皆有光催化效果。最後結果顯示銀-二氧化鈦-二氧化矽的光催化效果高於二氧化鈦-二氧化矽。經UV-Vis分析添加銀可以提高光催化活性。此外,存放一年後溶膠依舊穩定且酸鹼度依然維持中性,溶膠皆沒有變質分解。在紫外光和可見光照射下最佳的二氧化矽/二氧化鈦/銀莫耳比為5/1/0.02,皆表現出較高的光催化活性。抗菌試驗顯示經UVA光照射3小時後,銀-二氧化鈦-二氧化矽具有良好的抗菌能力,抗菌率高達99.9%以上。
摘要(英) TiO2 is a photocatalys that can degrade harmful organic compounds into H2O and CO2. In this study, TiO2 sol was prepared by sol-gel method using TiCl4 as precursor and H2O2 as peptizing agent in order to induce the formation of TiO2 nanoparticles that converted from Ti(OH)4 under 95°C. In order to find an efficient way to improve the activity of photocatalyst and antibacterial property, silver was added. SiO2 was then added in the silver-titanium dioxide sol to improve the transmittance of the sol.
The purpose of this study was to apply a sol-gel method to prepare silver modified SiO2/TiO2 to enhance stability of sol, TiO2 particle size distribution, and improve photocatalytic activity under UV light and visible light irradiation. The presence of silver lead to high antibacterial capability. The nanoparticles were characterized by X–ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR–TEM), scanning electron microscope (SEM), X–ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and UV-Vis spectroscopy. Titanium dioxide sols were anatase as confirmed by XRD and HRTEM. The particle size of the smaple was measured by DLS and HRTEM. Both the sols and the films of titania-silica and silver-titania-silica were active for methylene blue destruction under UV light and visible light irradiation. The results showed that the quantum efficiency of silver-titania-silica was higher than that of titania-silica. The addition of silver could improve the phtocatalytic activity. In addition, the sols remained neutral, stable and did not separate after storage for over a year. The optimum SiO2/TiO2/silver molar ratios were 5/1/0.02, and it showed high photocatalytic activities under both of UV light and visible light irradiation. From antibacteria test, it showed that after irradiation by UVA light for 3 hours, the silver-titania-silica had a high antibacterial ability, and the antibacteria rate reached over 99.9%.
關鍵字(中) ★ 二氧化鈦
★ 二氧化矽
★ 抗菌
★ 銀催化劑
★ 溶膠凝膠法
★ 亞甲基藍降解
★ 光催化
★ 銀納米顆粒
關鍵字(英) ★ Titanium dioxide
★ Silicon dioxide
★ Antibacterial
★ Silver cocatalyst
★ Sol–gel method
★ Methylene blue degradation
★ Photocatalysis
★ Silver nanoparticle
論文目次
中文摘要 I
Abstract II
Table of contents IV
List of figures VII
List of tables XI
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Heterogeneous titanium dioxide properties 3
2.1.1 Mechanism of titanium dioxide 3
2.2 Modification of titanium dioxide 5
2.2.1 Rare earth metal doping 5
2.2.2 Noble metal doping 6
2.2.3 Transition metal doping 7
2.2.4 Non-metal doping 7
2.3 Mechanism of silver-doped TiO2 8
2.4 SiO2/TiO2 as photocatalyst 9
2.4.1 Preparation of SiO2/TiO2 10
2.4.2 Mechanism of SiO2/TiO2 to the self-cleaning effect 10
2.5 Band gap of films 12
2.6 Antibacterial 14
2.6.1 Electrostatic adsorption antibacterial 15
2.6.2 Metal dissolution antibacterial 15
2.6.3 Photocatalyst antibacterial 16
Chapter 3 Experimental 17
3.1 Materials 17
3.2 Methodology 17
3.2.1 Synthesis of TiO2/SiO2 and Ag-doped TiO2/SiO2 sols 17
3.2.2 Preparation of TiO2/SiO2 and Ag-doped TiO2/SiO2 films 19
3.3 Characterization 21
3.3.1 X-Ray Diffraction (XRD) 21
3.3.2 Transmission Electron Microscopy (TEM) and High-resolution Electron Microscopy (HRTEM) 24
3.3.3 Dynamic Light Scanning (DLS) 25
3.3.4 X-Ray Photoelectron Spectroscopy (XPS) 25
3.3.5 UV-Visible Spectrophotometer 26
3.4 Degradation of methylene blue 27
3.4.1 Photocatalytic activity under UV light irradiation 28
3.4.2 Photocatalytic activity under Visible light irradiation 30
Chapter 4 Preparation of TiO2/SiO2 and Ag-doped TiO2/SiO2 Thin Film, and its Application on Photocatalytic Degradation of Methylene Blue 32
4.1 Experimental 32
4.1.1 Materials 32
4.1.2 Synthesis of TiO2/SiO2 and Ag-doped TiO2/SiO2 sols 32
4.1.3 Preparation of TiO2/SiO2 and Ag-doped TiO2/SiO2 films 33
4.1.4 Photocatalytic activity 34
4.1.5 Characterization 35
4.2 Results and discussion 36
4.2.1 Characteristics of TiO2/SiO2 and Ag-doped TiO2/SiO2 sols 36
4.2.2 XRD 38
4.2.3 TEM and HRTEM 40
4.2.4 XPS 44
4.2.5 DLS 46
4.2.6 UV-visible Spectrophotometer 49
4.2.7 Photodegradation of methylene blue under UV light irradiation 53
4.2.8 Photodegradation of methylene blue under visible light irradiation 55
Chapter 5 Antibacterial Test of TiO2/SiO2 and Ag-doped TiO2/SiO2 59
5.1 Materials 59
5.2 Preparation of antibacterial test 59
5.3 Results of antibacterial test of TiO2/SiO2 and Ag-doped TiO2/SiO2 62
Chapter 6 Conclusions 66
References 67
參考文獻 Akhavan, O., “Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation”, J. of Colloid and Interface Science 336 (2009) 117-124.

Andrew, M., and S. L. Hunte, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A-Chem. (1997) 1-35.

Asilturk, M., F. Sayilkan, E. Arpac, “Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation”, J. Photochem. Photobiol. A 203 (2009) 64-71.

Chong, M. N., B. Jin, C. W. K. Chow, and C. Saint, “Recent developments in photocatalytic water treatment technology: A review”, water research 44 (2010) 2997-3027.

Daghrir, R., P. Drogui, and D. Robert, “Modified TiO2 For Environmental Photocatalytic Applications: A Review”, Ind. Eng. Chem. Res. 52 (2013) 3581-3599.

Diebold, U., “The surface science of titanium dioxide”, Surf. Sci. Rep. 48 (2003) 53-229.

Dobosz, A. and A. Sobczyński, “The influence of silver additives on titania photoactivity in the photooxidation of phenol”, Water Research 37 (2003) 1489-1496.

Fujishima, A., T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1-21.

Fujishima, A., X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports 63 (2008) 515-582.

Gao, X. and I. E. Wachs, “Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties”, Catalysis Today 51 (1999) 233-254.

Grabowska, E., H. Remita, A. Zaleska, “Photocatalytic activity of TiO2 loaded with metal clusters”, Physicochem. Probl. Miner. Process. 45 (2010) 29-38.

Guana, K., B. Luc, and Y. Yin, “Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films”, Surface and Coatings Technology 173 (2003) 219-223.

Guan, K., “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films”, Surface & Coatings Technology 191 (2005) 155-160.

Huda, S., S. K. Smoukov, H. Nakanishi, B. Kowalczyk, K. Bishop, and B. A. Grzybowski, “Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA)”, Appl. Mater. Interfaces 4 (2010) 1206-1210.

Jaiswal, R., N. Patel, D.C. Kothari, and A. Miotello, “Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen”, Applied Catalysis B: Enviromental 126 (2012) 47-54.

Li, F., L. X. Guan, M. L. Dai, J. J. Feng, and M. M. Yao, “Effects of V and Zn codoping on the microstructures and photocatalytic activities of nanocrystalline TiO2 films”, Ceramics International 39 (2013) 7395-7400.

Lin, Y. c. and C. h. Lin, “Catalytic and photocatalytic degradation of ozone via utilization of controllable nano‐Ag modified on TiO2”, Environmental Progress 27 (2008) 496-502.

Linsebigler, A. L., G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews 95 (1995) 735-758.

Liu, P. C., J. H. Hsieh, C. Li, Y. K. Chang, and C. C. Yang, “Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films”, Thin Solid Films 517 (2009) 4956-4960.

Liu, S. X., Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide”, Catalysis Today (2004) 93-95, 877-884.

Liu, Z., J. Ya, L.E, Y. Xin, and W. Zhao, “Effect of V doping on the band-gap reduction of porous TiO2 films prepared by sol-gel route”, Mater. Chem. Phys. 120 (2010) 277-281.

Lo´pez, R. and R. Go´mez, “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study”, J Sol-Gel Sci Technol 61 (2012) 1-7.

Machida, M., K. Norimoto, T. Watanabe, K. Hashimoto, and A. Fujishima, “The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst”, J. Mater. Sci. 34 (1999) 2569-2574.

Macwan, D. P., P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications”, J. Mater. Sci. 46 (2011) 3669–3686.

Nakata, K., and A. Fujishima, “TiO2 photocatalysis: Design and applications”, J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169-189.

Nittaa, Y., K. Okamotoa, T. Nakatania, H. Hoshib, A. Hommab, E. Tatsumib and Y. Taenaka, “Diamond-like carbon thin film with controlled zeta potential for medical material application.” Diamond and Related Materials 17(2008) 1972-1976.

Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlope, J. W. J. Hamiltone, J. A. Byrne, K. O’Shea, M. H. Entezari, D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Appl. Catal. B: Environ. 125 (2012) 331-349.

Sasirekha, N., B. Rajesh, and Y.W. Chen, “Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent”, Thin Solid Films 518 (2009) 43-48.
Tanabe, K., T. Sumiyoshi, K. Shibata, T. Kiyoura, and J. Kitagawa, “A new hypothesis regarding the surface acidity of binary metal oxides”, Bulletin of the Chemical Society of Japan (1974) 1064-1066.

Teh, C.M., A. R. Mohamed, “Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review”, J. Alloys Compd. 509 (2011) 1648-1660.

Wang, R., K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, “Photogeneration of highly amphiphilic TiO2 surfaces”, Adv. Mater. (1998) 135-138.

Xu, Y. H., C. Chen, X.L. Yang, X. Li, B.F. Wang, “Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes”, Applied Surface Science 255 (2009) 8624-8628.

Zhang, D. R., H. L. Liu, S. Y. Han, and W. X. Piao, “Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B”, J. Ind. Eng. Chem. 19 (2013) 1838-1844.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明