博碩士論文 104324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.188.35.25
姓名 王祖皓(Tzu-Hao Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含鈀雙金屬蛋殼形觸媒之製備與氫化反應之應用
(Preparation of Au-Pd/SiO2 catalyst with egg-shell structure and its application in p-CNB hydrogenation reaction)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 含鈀金屬奈米觸媒在對-氯硝基苯的氫化反應上有良好的催化活性,但目標產物對-氯苯胺的選擇性較低,本研究將探討鈀金雙金屬擔載於球形二氧化矽表面形成蛋殼形觸媒之反應前後變化以及製備不同比例的鈀金觸媒進行氫化反應之應用。觸媒鑑定部分,以X光繞射儀(XRD)、穿透式顯微鏡(TEM)、高解析穿透式顯微鏡(HRTEM)、X光光電子能譜儀(XPS)來分析觸媒之物理、化學特性及表面性質,觸媒催化部分則利用液相選擇性對-氯硝基苯氫化反應測試觸媒活性與選擇性,使用的反應器為半批式反應器(Parr Reactor 4842),反應條件如下:反應溫度為室溫,氫氣分壓為0.55 MPa,反應器攪拌速率300 rpm.,反映溶劑為甲醇,反應時間180分鐘,使用0.5 g觸媒進行反應,每10分鐘取樣一次,並使用氣相層析儀(GC)分析。
未使用之新鮮蛋殼形鈀金雙金屬觸媒金屬平均顆粒尺寸較純鈀觸媒小,於二氧化矽擔體上分布均勻,具有很多的活性金屬,而在反應初期,金屬在二氧化矽上仍能保持不錯的分散性,主要是因添加金而形成鈀金合金可避免金屬聚集效應。但經過長時間的使用還是會導致金屬聚集、顆粒變大,使活性金屬接觸面積減少進而導致觸媒失活。另外我們發現使用過後的觸媒進行氫化反應時活性大幅下降,但對-氯苯胺選擇率仍與新鮮觸媒差距不大,因此我們認為反應過後的觸媒表面之金屬顆粒組成與新鮮觸媒相似,因此選擇率並無明顯下降。此外,我們自己製備出的二氧化矽之蛋殼形觸媒金屬分散性以及催化效果可以與商業用觸媒達到一致。
摘要(英)
Nano-palladium catalyst has been reported to have high activity for hydrogenation reaction but selectivity of main product, p-chloroaniline (p-CAN), was low. In this study, gold-palladium bimetals were loaded on spherical silica to form the egg-shell catalyst and used different ratio of Au/Pd metal on silica to carry out the p-CNB hydrogenation reaction. All the catalysts were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). The condition of hydrogenation reaction was room temperature as reaction temperature, 0.55MPa as H2 partial pressure and at 300 rpm stirring rate.
The average particle size of Pd-Au/SiO2 fresh catalyst was smaller than that of Pd/SiO2 and the active metals were highly dispersed on SiO2 support surface. In the early stage of reaction, metals still maintained high dispersion. The main reason is adding gold as promoter can prevent metals from agglomeration and dispread Pd to single active site. However, after long time on the stream, metals agglomeration on silica surface and larger particle size were observed and resulted in decrease in active metals and lead to deactivation. Besides, the activity of catalyst was significantly decreased but selectivity of p-CAN was not obvious change in p-CNB hydrogenation reaction. Therefore, metals composition was not serious change after the reaction.
關鍵字(中) ★ 雙金屬蛋殼形觸媒
★ 液相氫化反應
★ 對氯硝基苯
★ 對氯苯胺
★ 二氧化矽
關鍵字(英) ★ bimetallic catalyst
★ hydrogenation
★ p-chloronitrobenzene
★ p-chloroaniline
★ egg-shell catalyst
論文目次
Table of contents
中文摘要 I
Abstract II
Table of contents III
List of Tables V
List of Figures VI
List of Schemes VIII
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 Palladium catalysts 5
2.1.1 The size effect for palladium catalysts 6
2.1.2 The promoting effect of bimetallic palladium catalysts 7
2.1.3 The applications of bimetallic palladium catalysts 9
2.2 Preparations of supported metal catalysts 13
2.2.1 Impregnation method 13
2.2.2 Precipitation method 15
2.2.3 Coprecipitation method 16
2.3 Hydrogenation 17
2.3.1 Liquid-phase hydrogenation of p-chloronitrobenzene 18
Chapter 3 Experimental 21
3.1 Materials 21
3.2 Preparation of catalysts 21
3.3 Characterization of catalysts 23
3.3.1 X-ray diffraction (XRD) 23
3.3.2 Transmission electron microscopy (TEM) 24
3.3.3 High-resolution transmission electron microscopy (HRTEM) 25
3.3.4 X-ray photoelectron spectroscopy (XPS) 26
3.4 Reaction test 27
Chapter 4 Hydrogenation of p-CNB and synthesis vinyl acetate monomer on Au-Pd/SiO2 catalysts 29
4.1 Introduction 29
4.2 Results and discussion 33
4.2.1 XRD 33
4.2.2 TEM 36
4.2.3 HRTEM 40
4.2.4 XPS 45
4.2.5 Reaction test 52
4.2.6 reaction rate constant 56
4.3 Conclusion 57
Reference 59
參考文獻

A. M. Molenbroek, S. Haukka, and B. S. Clausen, Alloying in Cu/Pd Nanoparticle Catalysts, J. Phys. Chem. B, 102, 1998: P10680-10689.

B. Paweleca, A.M. Veneziab, V. La Parolaa, E. Cano-Serranoa, J.M. Campos Martina, and J.L.G. Fierro, AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation, Applied Surface Science, 242, 2005: P380-391.

B. Jones, M. Linnen, B. Tande and Wayne Seames, The Production of Vinyl Acetate Monomer as a Co-Product from the Non-Catalytic Cracking of Soybean Oil, Processes, 3, 2015: P619-633.

B. Coqa, F. Figueras, Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance, Journal of Molecular Catalysis A: Chemical, 173, 2001: P117–134.

C. Mingshu, D. W. GOODMAN, Promotional Effects of Au in Pd-Au Catalysts for Vinyl Acetate Synthesis, Chin J Catal, 29(11), 2008: P1178–1186.

D. Kumar, M.S. Chen, D.W. Goodman, Synthesis of vinyl acetate on Pd-based catalysts, Catalysis Today, 123, 2007: P77-85.

D. Kumara, Y.-F. Hana,b, M.S. Chena, and D.W. Goodman, Kinetic and spectroscopic studies of vinyl acetate synthesis over Pd(100), Catalysis Letters, 106, 2006: P1–2

D. Gudarzia, W. Ratchananusorna, I. Turunena, M. Heinonenb, andTapio Salmi, Promotional effects of Au in Pd–Au bimetallic catalysts supported onactivated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2, Catalysis Today, 248, 2015: P58-68.

E. Lalik, A. Drelinkiewicz, R. Kosydar, R. Tokarz-Sobieraj, M. Witko, T. Szumełda, J. Gurgul, D. Duraczy´nska, A role of Au-content in performance of Pd-Au/SiO2and Pd-Au/Al2O3catalyst in the hydrogen and oxygen recombination reaction. Themicrocalorimetric and DFT studies, Applied Catalysis A: General, 517, 2016: P196–210.

F. Gao and D. W. Goodman, Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles, Chem. Soc. Rev., 41, 2012: P8009–8020.

F. Cárdenas-Lizana, S. Gómez-Quero, A. Hugon, L. Delannoy, C. Louis, and M. A. Keane, Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au, Journal of Catalysis, 262, 2009: P235–243.

H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, and Martin Studer. Supported palladium catalysts for fine chemicals synthesis, Journal of Molecular Catalysis A: Chemical, 173, 2001: P3-18.

Huaiwei Ni, Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect, American Mineralogist, 97, 2012: P70–79.

J.P. Contreras, J.C. Naranjo, S. Ramírez, and D.M. Martínez, Vinyl Acetate from ethylene, acetic acid and oxygen Industrial Plant Simulation. Kirk-Othmer, 23, 1978: P817.

James A. Schwarz, Methods for Preparation of Catalytic Materials, Chem. Rev., 95, 1995: P477-510.

J. Zhang, H. Jin, M. B. Sullivan, F. C. H. Lim and Ping Wu, Study of Pd–Au bimetallic catalysts for CO oxidation reaction by DFT calculations, Phys. Chem. Chem. Phys., 11, 2009: P1441–1446.

J. R. Song, L. X. Wen, Z. M. Xia, and J. F. Chen, Preparation of egg-shell nanonickel catalyst for CO hydrogenation, Fuel Processing Technology, 88, 2007: P443–449.

J. Zhoua, H. Chenb, Q. Chena, and Z. Huang, Bimetallic Au-decorated Pd catalyst for the liquid phasehydrodechlorination of 2,4-dichlorophenol, Applied Surface Science, 381, 2016: P588–594.

K. Luo, T. Wei, C.-W. Yi, S. Axnanda, and D. W. Goodman, Preparation and Characterization of Silica Supported Au-Pd Model Catalysts, J. Phys. Chem. B, 109, 2005: P23517-23522.

K. Qian,1, L. Luo, Z. Jiang, and W. Huang, Alloying Au surface with Pd reduces the intrinsic activity in catalyzingCO oxidation, Catalysis Today, 280, 2017: P253–258.

K. Qian, and Weixin Huang, Au–Pd alloying-promoted thermal decomposition of PdO supported on SiO2 and its effect on the catalytic performance in CO oxidation, Catalysis Today, 164, 2011: P320–324.

L. HILAIRE, P. LEGARE, Y. HOLL and G. MAIRE, INTERACTION OF OXYGEN AND HYDROGEN WITH Pd-Au ALLOYS: AN AES AND XPS STUDY, Surface Science, 103, 1981: P125-140.

L. Di, W. Xu, Z. Zhana and X. Zhang, Synthesis of alumina supported Pd–Cu alloy nanoparticles for CO oxidation via a fast and facile method, RSC Adv., 5, 2015: P71854.

M. M. Pohl, J. Radnik, M. Schneider, U. Bentrup, D. Linke, A. Brückner,and Ewen Ferguson, Bimetallic PdAu–KOac/SiO2 catalysts for vinyl acetate monomer (VAM) synthesis: Insights into deactivation under industrial conditions, Journal of Catalysis, 262, 2009: P314–323.

M. Bonarowska, J. Pielaszek, V. A. Semikolenov, and Z. Karpi ´ nski, Pd–Au/Sibunit Carbon Catalysts: Characterization and Catalytic Activity in Hydrodechlorination of Dichlorodifluoromethane (CFC-12), Journal of Catalysis, 209, 2002: P528–538.

M.S. Chen, K. Luo, T. Wei, Z. Yan, D. Kumar, C.-W. Yi, and D.W. Goodman, The nature of the active site for vinyl acetate synthesis over Pd–Au, Catalysis Today 117, 2006: P37–45.

M. L. Toebes, J. A. van Dillen, and K. P. de Jong, Synthesis of supported palladium catalysts, Journal of Molecular Catalysis A: Chemical, 173, 2001: P 75–98.

N. Macleod, J. M. Keel, and R.M. Lambert, The effects of ageing a bimetallic catalyst under industrial conditions: a study of fresh and used Pd-Au-K/silica vinyl acetate synthesis catalysts, Applied Catalysis A: General, 261, 2004: P37–46.

P. Venkatesan, and J. Santhanalakshmi, Core-Shell Bimetallic Au-Pd Nanoparticles: Synthesis, Structure, Optical and Catalytic Properties, Nanoscience and Nanotechnology, 2011, 1(2): P43-47.

P. Venkatesan,and J. Santhanalakshmi, Core-Shell Bimetallic Au-Pd anoparticles: Synthesis, Structure, Optical and Catalytic Properties, Nanoscience and Nanotechnology, 2011, 1(2): P43-47.

P. Kittisakmontree, H. Yoshida, S. Fujita, M. Arai,and Joongjai Panpranot, The effect of TiO2 particle size on the characteristics of Au–Pd/TiO2 catalysts, Catalysis Communications, 58, 2015: P70–75.

S. V. Myers, A. I. Frenkel, and Richard M. Crooks, X-ray Absorption Study of PdCu Bimetallic Alloy Nanoparticles Containing an Average of ∼64 Atoms, Chem. Mater, 2009, 21: P4824–4829.

T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry, Electrochimica Acta, 52, 2007: P5512–5516.

W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, and Andrzej Wieckowski, Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic Acid, J. Phys. Chem. B, 2006, 110: P13393-13398.

W. Li, A. Wanga, X. Liua, and T. Zhanga, Silica-supported Au–Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols, Applied Catalysis A: General 433–434, 2012: P146–151.

W. Fang, Y. Deng, L. Tang, G. Zeng, Y. Zhou, X. Xie, J. Wang, Y. Wang, and J. Wang, Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol, Journal of Colloid and Interface Science, 490, 2017: P834–843.

W. D. Provine, D. A. Dixon, G. W. Couiston, and J. J. Lerou, FIRST PRINCIPLE ANALYSIS OF THE CATALYTIC REACTION PATHWAYS IN THE SYNTHESIS OF VINYL ACETATE, Chemical Engineering Science, 51, 1996: P1691-1699.

X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu, and Y. Su, High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation, Journal of Catalysis, 291, 2012: P36–43.

Y.-F. Han, J.-H. Wang, D. Kumar, Z. Yan, and D.W. Goodman, A kinetic study of vinyl acetate synthesis over Pd-based catalysts: kinetics of vinyl acetate synthesis over Pd–Au/SiO2 and Pd/SiO2 catalysts, Journal of Catalysis, 232, 2005: P467–475.

Y.-F. Han, D. Kumar, and D.W. Goodman, Particle size effects in vinyl acetate synthesis over Pd/SiO2, Journal of Catalysis, 230, 2005: P353–358.

Y. Xu, J. Ma, Y. Xu, L. Xu, L. Xu, H. Li and H. Li, Palladium nanoparticles encapsulated in porous silica shells: an efficient and highly stable catalyst for CO oxidation, RSC Advances, 2013, 3: P851.

Y. C. Liu, C.Y. Huang and Yu-Wen Chen, Hydrogenation of p-chloronitrobenzene on Ni–B nanometal catalysts, Journal of Nanoparticle Research, 2006, 8: P223–234.

Y. C. Liu, C.Y. Huang and Yu-Wen Chen, Liquid-Phase Selective Hydrogenation of p-Chloronitrobenzene on Ni-P-B Nanocatalysts, Ind. Eng. Chem. Res, 2006, 45: P62-69.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2017-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明