博碩士論文 104223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:139 、訪客IP:3.145.183.137
姓名 林哲儀(Jhe-Yi Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 數類含雜環結構單元之染料分子的合成與其雙光子吸收性質探討
(Synthesis and Investigation of Two-photon Absorption Properties of Organic Molecules with Various Heterocyclic Structural Units)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文一共合成出三個系列的模型分子,第一系列為含有三個氮的六員雜環結構單元(三嗪;1,2,4-triazine);第二系列為含有四個氮的六員雜環結構單元(四嗪;1,2,4,5-tetrazine);第三系列則為具有不同拉電子強度之核心單元的雜環分子,如苯并噻二唑(benzothiadiazole)、喹喔啉(quinoxaline)、三唑(triazole)以及鄰苯二甲醯亞胺(phthalimide),並藉由光學量測來比較各系列間結構上的差異所造成其線性與非線性光學性質上的差別。在線性光學性質探討部分我們量測了吸收光譜、螢光光譜、螢光量子產率與螢光生命期;而在非線性光學性質研究部分我們則是量測雙光子激發光譜與光學功率限幅。在雙光子激發光譜中,我們會以能量依賴性實驗來證實我們所看到的螢光確實為雙光子所誘導,進而利用螢光比較法計算出雙光子吸收截面;由以上的光學數據可歸納出以下結論:
[1] 本論文所研究的三嗪(triazine)衍生物在螢光量子產率的表現上皆不佳(量子產率範圍:0.002~0.24)。我們推測三嗪(triazine)衍生物其基態電子被激發到激發態後易以非輻射的方式釋放激發態能量,以至於本系列模型分子之螢光量子產率皆不高。
[2] 四嗪(tetrazine)與喹喔啉(quinoxaline)結合的衍生物擁有不錯的雙光子吸收性質,且有明顯的溶劑效應。
[3] 具有不同拉電子核心單元的條型模型分子都具有良好的雙光子吸收表現,其中以含有苯并噻二唑(benzothiadiazole)為核心的模型分子,其雙光子吸收表現最好。
本論文中也記錄了有關開發含高度共平面結構單元之染料分子的合成探討。藉由合成途徑的優化與修改,我們順利地得到目標前驅物。在這個計畫中我們嘗試優化實驗的條件、途徑以及產率,這些經驗可以作為未來繼續開發此類結構的基礎。
摘要(英)
In this thesis, we have successfully synthesized three series of model compounds with various heterocyclic structural units, and we have also compared their optical properties by linear and nonlinear optical experiments. For linear optical property studies, we have measured linear absorption spectra, fluorescence spectra, quantum yield and life time. For the nonlinear optical property studies, we have measured two-photon absorption spectra and two-photon-based optical power-limiting in the femtosecond and nanosecond regimes, respectively. In order to verify that the fluorescence we have observed is induced by two-photon absorption, we have performed the power-dependence experiment. Based on the collected optical data, some features can be noted:
[1] All of the triazine derivatives exhibit poor quantum yields, as we postulate that the excited state of the electrons release their energy by nonradiative pathways, so that such series of model compounds do not show strong fluorescence.
[2] The structure unit with fused tetrazine and quinoxaline units can promote the molecular two-photon absorption. These chromophores also possess salient solvatofluorochromism.
[3] The structure contains benzothiadiazole (BTD) unit that show excellent two-photon absorption.
In addition, we have also explored the synthetic procedures toward highly coplanar polyarene system based on phenanthrenequinone. We have tried to optimize the experimental conditions in order to increase the easy of synthesis and the yields. All the efforts devoted in this project have come out as valuable experience that may help the future investigation.
關鍵字(中) ★ 雙光子吸收
★ 發色團
★ 共軛
★ 光學功率限幅
關鍵字(英) ★ Two-photon absorption
★ Chromophores
★ Conjugation
★ Optical power-limiting
論文目次
第一章 序論 1
1-1雙光子吸收理論及歷史演進 1
1-2雙光子吸收材料的相關應用 5
1-3雙光子吸收材料的分子設計及文獻回顧 6
第二章 本論文模型分子的設計與合成 21
2-1本論文模型分子的設計概念 21
2-1-1含有三嗪(triazine)結構單元的模型分子 22
2-1-2含有四嗪(tetrazine)結構單元的模型分子 29
2-1-3具donor-acceptor-donor (D-A-D)性質的分子 32
2-2本論文模型分子的合成途徑 35
2-2-1第一系列:含有三嗪(triazine)結構單元的模型分子 35
2-2-2第二系列:含有四嗪(tetrazine)結構單元的模型分子 44
2-2-3第三系列:具donor-acceptor-donor (D-A-D)性質之模型分子 55
第三章 光學性質探討 68
3-1光學實驗及光學儀器詳述 68
3-2模型分子線性及非線性光學數據 75
3-2-1第一系列:含有三嗪(triazine)結構單元的模型分子 75
3-2-2第二系列:含有四嗪(tetrazine)結構單元的模型分子 93
3-2-3第三系列:具donor-acceptor-donor結構單元之模型分子. 102
3-4各系列模型分子光學性質結果與討論 110
第四章 Phenanthrenequinone衍生物的合成及探討 114
4-1模型分子設計概念 114
4-2模型分子合成途徑 115
4-3模型分子後續發展 129
第五章 實驗部分 133
5-1合成所使用的藥品及溶劑 133
5.2本論文化合物的合成詳細步驟 136
第六章 附圖 227
參考文獻
第一章
[1] G. S. He, L.-S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev. 2008, 108, 1245-1330.
[2] M. Göppert-Mayer, Ann. Phys (Leipzig), 1931, 9, 273-294.
[3] Kaiser and C. G. B. Garrett, Phys. Rev. Lett., 1961, 7, 229-231.
[4] W. L. Peticolas and K. E. Rieckhoff, J. Chem. Phys., 1963, 39, 1347-1348.
[5] I. Webman and J. Jortner, J. Chem. Phys., 1969, 50, 2706-2716.
[6] G. S. He, G. C. Xu and P. N. Prasad, Opt. Lett., 1995, 20, 435-437.
[7] T.-C. Lin, S.-J. Chung, K.-S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar and P. N. Prasad, Adv. Polym. Sci., 2003, 161, 158-193.
[8] C. W. Spangler, J. Mater. Chem., 1999, 9, 2013–2020.
[9] G. S. He, L. Yuan, N. Cheng, J. D. Bhawalkar and P. N. Prasad, J. Opt. Soc. Am. B, 1997, 14, 1079-1087.
[10] G. S. He, J. Swiatkiewicz, Y. Jiang and P. N. Prasad, J. Phys. Chem. A, 2000, 104, 4805-4810.
[11] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. R. Ckel, M. Rumi, X.-L. Wu, S. R. Marder and J. W. Perry, Nature, 1999, 398, 51-54.
[12] G. S. He, T.-C. Lin and P. N. Prasad, Appl. Phys. Lett., 2003, 82, 4717-4719.
[13] Y. Chitose, M. Abe, K. Furukawa, J.-Y. Lin, T.-C. Lin and C. Katan, Org. Lett., 2017, 19, 2622-2625.
[14] 取自http://www.nextgenerationpdt.com/.
[15] S. Shukla, E. P. Furlani, X. Vidal, M. T. Swihart and P. N. Prasad, Adv. Mater. 2010, 22, 3695–3699.
[16] Y. Shen, J. Swiatkiewicz, P. N. Prasad and R. A. Vaia, Opt. Commun., 2001, 200, 9-13.
[17] M. P. Joshi, J. Swiatkiewicz, F. Xu and P. N. Prasad, Opt. Lett., 1998, 23, 1742-1744.
[18] M. Grzybowski and D. T. Gryko, Adv. Optical Mater. 2015, 3, 280–320.
[19] W. Zhang, B. Li, H. Ma, L. Zhang, Y. Guan, Y. Zhang, X. Zhang, P. Jing and S. Yue, Appl. Mater. Interfaces, 2016, 8, 21465−21471.
[20] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem. Mater. 1998, 10, 1863-1874.
[21] R. Kannan, G. S. He, L. Yuan, F. Xu, P. N. Prasad, A. G. Dombroskie, B. A. Reinhardt, J. W. Baur, R. A. Vaia and L.-S. Tan, Chem. Mater. 2001, 13, 1896-1904.
[22] M. Albota, D. Beljonne, J.-L. Brĕdas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rőckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu and C. Xu, Science, 1998, 281, 1653-1656.
[23] O. Mongin, J. Brunel, L. Porrĕsa and M. Blanchard-Desce, Tetrahedron Lett., 2003, 44, 2813–2816.
[24] T.-C. Lin, M.-H. Li, C.-Y. Liu, J.-H. Lin, Y.-K. Shen and Y.-H. Lee, J. Mater. Chem. C, 2013, 1, 2764–2772.
[25] T.-C. Lin, C.-Y. Liu, B.-R. Huang, J.-H. Lin, Y.-K. Shen and C.-Y. Wu, Eur. J. Org. Chem., 2013, 498–508.
[26] T.-C. Lin, Y.-Y. Liu, M.-H. Li and Y.-H. Lee, Dyes Pigm., 2014, 109, 72-80.
[27] T.-C. Lin, Y.-H. Lee, C.-Y. Liu, B.-R. Huang, M.-Y. Tsai, Y.-J. Huang, J.-H. Lin, Y.-K. Shen and C.-Y. Wu, Chem. Eur. J., 2013, 19, 749 – 760.
[28] S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz and P. N. Prasad, J. Phys. Chem. B, 1999, 103, 10741-10745.
[29] M. Drobizhev, A. Karotki and A. Rebane, Opt. Lett., 2001, 26, 1081.
[30] T.-C. Lin, C.-Y. Liu, M.-H. Li, Y.-Y. Liu, S.-Y. Tseng, Y.-T. Wang, Y.-H. Tseng, H.-H. Chu and C.-W. Luo, J. Mater. Chem. C, 2014, 2, 821–828.
[31] T. Schwich, M. P. Cifuentes, P. A. Gugger, M. Samoc and M. G. Humphrey, Adv. Mater., 2011, 23, 1433–1435.
[32] M. Samoc, J. P. Morrall, G. T. Dalton, M. P. Cifuentes and M. G. Humphrey, Angew. Chem. Int. Ed., 2007, 46, 731-733.
[33] S. Drouet, A. Merhi, D. Yao, M. P. Cifuentes, M. G. Humphrey, M. Wielgus, J. Olesiak-Banska, K. Matczyszyn, M. Samoc, F. Paul and C. O. Paul-Roth, Tetrahedron, 2012, 68, 10351-10359.
第二章
[1] R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia and L.-S. Tan, Chem. Mater. 2004, 16, 185-194.
[2] S. Ren, D. Zeng, H. Zhong, Y. Wang, S. Qian and Q. Fang, J. Phys. Chem. B, 2010, 114, 10374–10383.
[3] W.-Y. Hung, P.-Y. Chiang, S.-W. Lin, W.-C. Tang, Y.-T. Chen, S.-H. Liu, P.-T. Chou, Y.-T. Hung and K.-T. Wong, Appl. Mater. Interfaces, 2016, 8, 4811−4818.
[4] J.-H. Lee, H. Shin, J.-M. Kim, K.-H. Kim and J.-J. Kim, Appl. Mater. Interfaces, 2017, 9, 3277−3281.
[5] S.-J. Su, H. Sasabe, Y.-J. Pu, K.-I. Nakayama and J. Kido, Adv. Mater., 2010, 22, 3311–3316.
[6] M. Kim, S. K. Jeon, S.-H. Hwang and J. Y. Lee, Adv. Mater., 2015, 27, 2515–2520.
[7] B. D. Salert, A. Wedel, L. Grubert, T. Eberle, R. Anĕmian and H. Krueger, Adv. Mater. Sci. Eng., 2012, 1-15.
[8] Y. Wada, K. Shizu, S. Kubo, K. Suzuki, H. Tanaka, C. Adachi and H. Kaji, Appl. Phys. Lett., 2015, 107, 183303-183306.
[9] S. Y. Lee, T. Yasuda, H. Nomura and C. Adachi, Appl. Phys. Lett., 2012, 101, 093306-093309.
[10] N. Jung, E. Lee, J. Kim, J. Y. Lee, S. J. Lee and Y. Kang, Bull. Korean Chem. Soc., 2011, 32, 4075-4078.
[11] K.-H. Kim, J. Y. Baek, C. W. Cheon, C.-K. Moon, B. Sim, M. Y. Choi, J.-J. Kim and Y.-H. Kim, Chem. Commun., 2016, 52, 10956-10959.
[12] H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown and C. Adachi, Chem. Mater., 2004, 16, 1285-1291.
[13] M. M. Rothmann, S. Haneder, E. D. Como, C. Lennartz, C. Schildknecht and P. Strohriegl, Chem. Mater., 2010, 22, 2403–2410.
[14] D. Wagner, S. T. Hoffmann, U. Heinemeyer, I. Münster, A. Köhler and P. Strohriegl, Chem. Mater., 2013, 25, 3758−3765.
[15] X.-K. Liu, C.-J. Zheng, M.-F. Lo, J. Xiao, Z. Chen, C.-L. Liu, C.-S. Lee, M.-K. Fung and X.-H. Zhang, Chem. Mater., 2013, 25, 4454−4459.
[16] T.-Y. Chu, M.-H. Ho, J.-F. Chen and C. H. Chen, Chem. Phys. Lett., 2005, 415, 137–140.
[17] Y. Wu, Z. Zhang, S. Yue, R. Huang, H. Du and Y. Zhao, Chin. J. Chem., 2015, 33, 897-901.
[18] W. White, Z. M. Hudson, X. Feng, S. Han, Z.-H. Lu and S. Wang, Dalton Trans., 2010, 39, 892–899.
[19] B. Huang, W. Jiang, J. Tang, X. Ban, R. Zhu, H. Xu, W. Yang and Y. Sun, Dyes Pigm., 2014, 101, 9-14.
[20] X.-K. Liu, C.-J. Zheng, J. Xiao, M.-F. Lo, Z. Chen, C.-S. Lee, C.-L. Liu, X.-M. Ou, F. Li and X.-H. Zhang, Isr. J. Chem., 2014, 54, 952 – 957.
[21] K. Idzik, J. Sołoducho, M. Łapkowski and P. Data, J. Fluoresc., 2010, 20, 1069–1075.
[22] T. Lu, J. You, D. Zhao, H. Wang, Y. Miao, X. Liu, Y. Xiao, X. Li and S. Wang, J. Mater. Sci., Mater. Electron., 2015, 26, 6563–6571.
[23] R. Jin, J. Mol. Model., 2015, 21, 219-227.
[24] Q. Wang, J. U. Wallace, T. Y.-H. Lee, J. J. Ou, Y.-T. Tsai, Y.-H. Huang, C.-C. Wu, L. J. Rothbergd and S. H. Chen, J. Mater. Chem. C, 2013, 1, 2224–2232.
[25] Y. Xiang, S. Gong, Y. Zhao, X. Yin, J. Luo, K. Wu, Z.-H. Lu and C. Yang, J. Mater. Chem. C, 2016, 4, 9998-10004.
[26] J.-W. Kang, D.-S. Lee, H.-D. Park, Y.-S. Park, J. W. Kim, W.-I. Jeong, K.-M. Yoo, K. Go, S.-H. Kim and J.-J. Kim, J. Mater. Chem., 2007, 17, 3714–3719.
[27] H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang and K.-T. Wong, J. Mater. Chem., 2009, 19, 8112–8118.
[28] C.-H. Chang, M.-C. Kuo, W.-C. Lin, Y.-T. Chen, K.-T. Wong, S.-H. Chou, E. Mondal, R. C. Kwong, S. Xia, T. Nakagawa and C. Adachi, J. Mater. Chem., 2012, 22, 3832–3838.
[29] B. Qu, Z. Chen, F. Xu, H. Cao, M. Huang and Q. Gong, Mater. Lett., 2006, 60, 1927–1930.
[30] B. Qu, Z. Chen, F. Xu, H. Cao, Z. Lan, Z. Wang and Q. Gong, Org. Electron., 2007, 8, 529–534.
[31] R. A. Klenkler, H. Aziz, A. Tran, Z. D. Popovic and G. Xu, Org. Electron., 2008, 9, 285–290.
[32] J.-W. Kang, D.-S. Lee, H.-D. Park, J. W. Kim, W.-I. Jeong, Y.-S. Park, S.-H. Lee, K. Go, J.-S. Lee and J.-J. Kim, Org. Electron., 2008, 9, 452–460.
[33] T. Matsushima, M. Takamori, Y. Miyashita, Y. Honma, T. Tanaka, H. Aihara and H. Murata, Org. Electron., 2010, 11, 16–22.
[34] S.-J. Su, C. Cai, J. Takamatsu and J. Kido, Org. Electron., 2012, 13, 1937–1947.
[35] J. Liu, M.-Y. Teng, X.-P. Zhang, K. Wang, C.-H. Li, Y.-X. Zheng and X.-Z. You, Org. Electron., 2012, 13, 2177–2184.
[36] D. Zhang, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang and Y. Qiu, Org. Electron., 2013, 14, 260–266.
[37] J. Xiao, X.-K. Liu, X.-X. Wang, C.-J. Zheng and F. Li, Org. Electron., 2014, 15, 2763–2768.
[38] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, Y. Luo, R. Li, X. Yan, F. Jin, Y. Gao and H. Wu, Org. Electron., 2015, 17, 15–21.
[39] T. Lin, T. Zhang, Q. Song, F. Jin, Z. Liu, Z. Su, Y. Luo, B. Chu, C. S. Lee and W. Li, Org. Electron., 2016, 38, 69-73.
[40] C. Sun, Z. M. Hudson, M. G. Helander, Z.-H. Lu and S. Wang, Organometallics, 2011, 30, 5552−5555.
[41] X.-K. Liu, C.-J. Zheng, J. Xiao, J. Ye, C.-L. Liu, S.-D. Wang, W.-M. Zhao and X.-H. Zhang, Phys. Chem. Chem. Phys., 2012, 14, 14255–14261.
[42] T. Serevićius, T. Nakagawa, M.-C. Kuo, S.-H. Cheng, K.-T. Wong, C.-H. Chang, R. C. Kwong, S. Xia and C. Adachi, Phys. Chem. Chem. Phys., 2013, 15, 15850-15855.
[43] M. Hu, Y. Liu, Y. Chen, W. Song, L. Gao, H. Mu, J. Huang and J. Su, RSC Adv., 2017, 7, 7287–7292.
[44] J. Xiao, Z. Y. Lü, X. K. Liu, Y. F. Han and L. R. Zheng, Synth. Met., 2014, 193, 89–93.
[45] E. Stathatos, L. Panayiotidou, P. Lianos and A. D. Keramidas, Thin Solid Films, 2006, 496, 489– 493.
[46] C. Quinton, S.-H. Chi, C. Dumas-Verdes, P. Audebert, G. Clavier, J. W. Perry and V. Alain-Rizzo, J. Mater. Chem. C, 2015, 3, 8351-8357.
[47] 陳柏村,「新型具喹喔啉、三嗪和吡嗪結構之染料分子的合成及其光學性質探討」,國立中央大學,化學學系,碩士論文,中華民國一百年八月。
[48] T.-C. Lin, Y.-J. Huang, Y.-F. Chen and C.-L. Hu, Tetrahedron, 2010, 66, 1375–1382.
[49] M.-J. Lee, M. S. Kang, M.-K. Shin, J.-W. Park, D. S. Chung, C. E. Park, S.-K. Kwon and Y.-H. Kim, J. Polym. Sci., A, Polym. Chem., 2010, 48, 3942-3949.
[50] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem. Mater., 1998, 10, 1863-1874.
[51] J. Sołoducho, S. Roszak, A. Chyla and K. Tajchert, New J. Chem., 2001, 25, 1175-1181.
[52] J. M. Kauffman and G. Moyna, J. Org. Chem., 2003, 68, 839-853.
[53] Z. Bo, C. Zhang, N. Severin, J. P. Rabe and A. D. Schlȕter, Macromolecules, 2000, 33, 2688-2694.
[54] S.-Y. Song, M. S. Jang, H.-K. Shim, D.-H. Hwang and T. Zyung, Macromolecules, 1999, 32, 1482-1487.
[55] M. Sailer, A. W. Franz and T. J. J. Mȕller, Chem. Eur. J., 2008, 14, 2602–2614.
[56] T.-S. Hsieh, J.-Y. Wu and C.-C. Chang, Dyes Pigm., 2015, 112, 34-41.
[57] F. L. James and W. H. Bryan, J. Org. Chem., 1958, 23, 1225-1227.
[58] J. P. Wolfe, S. Wagaw and S. L. Buchwald, J. Am. Chem. Soc., 1996, 118, 7215-7216.
[59] K. Park, G. Bae, J. Moon, J. Choe, K. H. Song and S. Lee, J. Org. Chem., 2010, 75, 6244–6251.
[60] J. M. Hancock, A. P. Gifford, Y. Zhu, Y. Lou and S. A. Jenekhe, Chem. Mater., 2006, 18, 4924-4932.
[61] E. C. Taylor and L. G. French, J. Org. Chem., 1989, 54, 1245-1249.
[62] J. Ding, M. Day, G. Robertson and J. Roovers, Macromolecules, 2002, 35, 3474-3483.
[63] R. F. Heck and J. P. Nolley, J. Org. Chem., 1972, 37, 2320-2322.
[64] J. Zanon, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2003, 125, 2890-2891.
[65] A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 14844-14845.
[66] R. Grisorio, P. Mastrorilli, C. F. Nobile, G. Romanazzi, G. P. Suranna and E. W. Meijer, Tetrahedron Lett., 2004, 45, 5367–5370.
[67] Y. Peng, H. Liu, M. Tang, L. CAI and V. Pike, Chin. J. Chem., 2009, 27, 1339-1344.
[68] X. Li, D. Wang, J. Wu and W. Xu, Synth. Commun., 2005, 35, 2553-2560.
[69] X. Li, Y. Xiao and X. Qian, Org. Lett., 2008, 10, 2885-2888.
[70] Y. Jiang, Y.-X. Lu, Y.-X. Cui, Q.-F. Zhou, Y. Ma and J. Pei, Org. Lett., 2007, 9, 4539-4542.
[71] J.-B. Baek, S. R. Simko and L.-S. Tan, Macromolecules, 2006, 39, 7959-7966.
[72] B. A. D. Neto, A. S. Lopes, G. Ebeling, R. S. Gonçalves, V. E. U. Costa, F. H. Quina and J. Dupont, Tetrahedron, 2005, 61, 10975–10982.
[73] R. Selvaraj and J. M. Fox, Tetrahedron Lett., 2014, 55, 4795–4797.
[74] D. Aldakov, M. A. Palacios and P. Anzenbacher, Jr., Chem. Mater., 2005, 17, 5238-5241.
[75] X. Fan, Y. Ge, F. Lin, Y. Yang, G. Zhang, W. S. C. Ngai, Z. Lin, S. Zheng, J. Wang, J. Zhao, J. Li and P. R. Chen, Angew. Chem. Int. Ed., 2016, 55, 14046 –14050.
[76] Y. Jin, Y. Kim, S. H. Kim, S. Song, H. Y. Woo, K. Lee and H. Suh, Macromolecules, 2008, 41, 5548-5554.
[77] J.-H. Kim, H. U. Kim, C. E. Song, I.-N. Kang, J.-K. Lee, W. S. Shin and D.-H. Hwang, Sol. Energy Mater. Sol. Cells, 2013, 108, 113–125.
[78] A. Tanimoto and T. Yamamoto, Adv. Synth. Catal., 2004, 346, 1818–1823.
[79] J. Liang, J. Lv, J.-C. Fan and Z.-C. Shang, Synth. Commun., 2009, 39, 2822-2828.
[80] T. T. Do, Y. E. Ha and J. H. Kim, Polymer(Korea), 2013, 37, 694-701.
[81] T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
[82] C.-H. Chen, Y.-C. Hsu, H.-H. Chou, K. R. J. Thomas, J. T. Lin and C.-P. Hsu, Chem. Eur. J., 2010, 16, 3184– 3193.
[83] S. Kotha, K. Lahiri and D. Kashinath, Tetrahedron, 2002, 58, 9633–9695.
第三章
[1] J. A. Gardecki and M. Maroncelli, Appl. Spectrosc., 1998, 52, 1179-1189.
[2] G. A. Reynolds and K. H. Drexhage, Opt. Commun., 1975, 13, 222-225.
[3] C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481-491.
[4] N. S. Makarov, M. Drobizhev and A. Rebane, Opt. Express, 2008, 16, 4029-4047.
[5] T.-C. Lin, Y.-H. Lee, B.-R. Huang, C.-L. Hu and Y.-K. Li, Tetrahedron, 2012, 68, 4935-4949.
[6] G. S. He, L. Yuan, N. Cheng, J. D. Bhawalkar, P. N. Prasad, L. L. Brott, S. J. Clarson and B. A. Reinhardt, J. Opt. Soc. Am. B, 1997, 14, 1079-1087.
[7] G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L.-S. Tan and R. Kannan, J. Phys. Chem. A, 2000, 104, 4805-4810.
第四章
[1] K. Brunner, A. van Dijken, H. Bőrner, J. J. A. M. Bastiaansen, N. M. M. Kiggen and B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035-6042.
[2] B. Kobin, L. Grubert, S. Blumstengel, F. Henneberger and S. Hecht, J. Mater. Chem., 2012, 22, 4383–4390.
[3] T. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List and K. Mȕllen, Angew. Chem. Int. Ed., 2008, 47, 8292 –8296.
[4] T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
[5] S. Kotha, K. Lahiri and D. Kashinath, Tetrahedron, 2002, 58, 9633–9695.
[6] Q. Zheng, S. K. Gupta, G. S. He, L.-S. Tan and P. N. Prasad, Adv. Funct. Mater., 2008, 18, 2770–2779.
[7] M. Rueping, B. J. Nachtsheim and W. Ieawsuwan, Adv. Synth. Catal., 2006, 348, 1033–1037.
[8] J.-B. Baek, S. R. Simko and L.-S. Tan, Macromolecules, 2006, 39, 7959-7966.
[9] M. Karnahl, S. Tschierlei, C. Kuhnt, B. Dietzek, M. Schmitt, J. Popp, M. Schwalbe, S. Krieck, H. Gőrls, F. W. Heinemann and S. Rau, Dalton Trans., 2010, 39, 2359–2370.
[10] J. Kaleta and C. Mazal, Org. Lett., 2011, 13, 1326-1329.
[11] R. He, L. Yu, P. Cai, F. Peng, J. Xu, L. Ying, J. Chen, W. Yang and Y. Cao, Macromolecules, 2014, 47, 2921−2928.
[12] T. H. Vo, M. Shekhirev, D. A. Kunkel, F. Orange, M. J.-F. Guinel, A. Enders and A. Sinitskii, Chem. Commun., 2014, 50, 4172-4174.
[13] C.-C. Hsiao, Y.-K. Lin, C.-J. Liu, T.-C. Wu and Y.-T. Wu, Adv. Synth. Catal., 2010, 352, 3267–3274.
[14] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem. Mater., 1998, 10, 1863-1874.
[15] Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, Chiu Y.-H., L. B. Alemany, T. Sasaki, J.-F. Morin, J. M. Guerrero, K. F. Kelly and J. M. Tour, J. Am. Chem. Soc., 2006, 128, 4854-4864.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2017-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明