參考文獻 |
[1] Kazmerski, L.L., " http://www.nrel.gov/ncpv/images/efficiency_chart.jpg ". NREL Accessed 13.03.2016, 2016.
[2] Peck, L., " Solar history: Alexandre Edmond Becquerellar. ". Solar Energy World Solar Panels, 2011.
[3] Chodos, A., " Bell Labs Demonstrates the First Practical Silicon Solar Cell ". APS Physics, 2009.
[4] Nathan Spielberg, B.D.A., " Seven Ideas that Shook the Universe, Trade Version ". John Wiley & Sons., 1987.
[5] Ohl, R.S., " Light-Sensitive Electric Device ". U. S. Patent 2402662, 1946.
[6] Kuang, Y., M.D. Vece, J.K. Rath, L. Dijk, and R.E. Schropp, " Elongated nanostructures for radial junction solar cells ". Rep Prog Phys, 2013. 76(10): p. 106502.
[7] Shockley, W. and H.J. Queisser, " Detailed balance limit of efficiency of p‐n junction solar cells ". Journal of applied physics, 1961. 32(3): p. 510-519.
[8] Kearns, D. and M. Calvin, " The photovoltaic effect and photoconductivity in laminated organicsystems ". Journal of Chemical Physics, 1958. 29(UCRL--8441).
[9] Tang, C.W., " Two-layer organic photovoltaic cell ". Applied Physics Letters, 1986. 48(2): p. 183.
[10] Peumans, P., A. Yakimov, and S.R. Forrest, " Small molecular weight organic thin-film photodetectors and solar cells ". Journal of Applied Physics, 2003. 93(7): p. 3693-3723.
[11] Tsukamoto, J., H. Ohigashi, K. Matsumura, and A. Takahashi, " A Schottky barrier type solar cell using polyacetylene ". Japanese Journal of Applied Physics, 1981. 20(2): p. L127.
[12] Padinger, F., R.S. Rittberger, and N.S. Sariciftci, " Effects of postproduction treatment on plastic solar cells ". Advanced Functional Materials, 2003. 13(1): p. 85-88.
[13] Tsubomura, H., M. Matsumura, Y. Nomura, and T. Amamiya, " Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell ". Nature, 1976. 261(5559): p. 402-403.
[14] Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, " Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers ". Nature chemistry, 2014. 6(3): p. 242-247.
[15] Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, " Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency ". science, 2011. 334(6056): p. 629-634.
[16] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, " Organometal halide perovskites as visible-light sensitizers for photovoltaic cells ". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[17] Davidson, M.W. and G.E. Lofgren, " Photomicrography in the geological sciences ". Journal of Geological Education, 1991. 39(5): p. 403-418.
[18] Green, M.A., A. Ho-Baillie, and H.J. Snaith, " The emergence of perovskite solar cells ". Nature Photonics, 2014. 8(7): p. 506-514.
[19] Xing, G., N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, " Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 ". Science, 2013. 342(6156): p. 344-347.
[20] Tanaka, K., T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, " Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3 ". Solid state communications, 2003. 127(9): p. 619-623.
[21] Sun, S., T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, and Y.M. Lam, " The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells ". Energy & Environmental Science, 2014. 7(1): p. 399-407.
[22] O’regan, B. and M. Grfitzeli, " A low-cost, high-efficiency solar cell based on dye-sensitized ". nature, 1991. 353(6346): p. 737-740.
[23] Hinsch, A., J. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, and J. Ferber, " Long‐term stability of dye‐sensitised solar cells ". Progress in Photovoltaics: Research and Applications, 2001. 9(6): p. 425-438.
[24] Asghar, M.I., K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, and P. Lund, " Review of stability for advanced dye solar cells ". Energy & Environmental Science, 2010. 3(4): p. 418-426.
[25] Wang, L., X. Fang, and Z. Zhang, " Design methods for large scale dye-sensitized solar modules and the progress of stability research ". Renewable and Sustainable energy reviews, 2010. 14(9): p. 3178-3184.
[26] Harikisun, R. and H. Desilvestro, " Long-term stability of dye solar cells ". Solar Energy, 2011. 85(6): p. 1179-1188.
[27] Bach, U., D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, " Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies ". Nature, 1998. 395(6702): p. 583-585.
[28] Krüger, J., R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, " High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination ". Applied Physics Letters, 2001. 79(13): p. 2085-2087.
[29] Krüger, J., R. Plass, M. Grätzel, and H.-J. Matthieu, " Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis (4, 4′-dicarboxy-2, 2′ bipyridine)-bis (isothiocyanato) ruthenium (II) ". Applied Physics Letters, 2002. 81(2): p. 367-369.
[30] Schmidt-Mende, L., S.M. Zakeeruddin, and M. Grätzel, " Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye ". Applied Physics Letters, 2005. 86(1): p. 013504.
[31] Snaith, H.J., R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, and M. Grätzel, " Charge collection and pore filling in solid-state dye-sensitized solar cells ". Nanotechnology, 2008. 19(42): p. 424003.
[32] Snaith, H.J., A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, and M. Grätzel, " Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture ". Nano Letters, 2007. 7(11): p. 3372-3376.
[33] Dualeh, A., F. De Angelis, S. Fantacci, T. Moehl, C. Yi, F. Kessler, E. Baranoff, M.K. Nazeeruddin, and M. Grätzel, " Influence of donor groups of organic D− π–a dyes on open-circuit voltage in solid-state dye-sensitized solar cells ". The Journal of Physical Chemistry C, 2011. 116(1): p. 1572-1578.
[34] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, " Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% ". Scientific reports, 2012. 2: p. 591.
[35] Han, L., N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, and R. Yamanaka, " Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance ". Applied Physics Letters, 2005. 86(21): p. 213501.
[36] Chiba, Y., A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, " Dye-sensitized solar cells with conversion efficiency of 11.1% ". Japanese Journal of Applied Physics, 2006. 45(7L): p. L638.
[37] Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, " Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells ". Nano letters, 2013. 13(4): p. 1764-1769.
[38] Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, " Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites ". Science, 2012. 338(6107): p. 643-647.
[39] Liu, M., M.B. Johnston, and H.J. Snaith, " Efficient planar heterojunction perovskite solar cells by vapour deposition ". Nature, 2013. 501(7467): p. 395-398.
[40] Hodes, G., " Perovskite-based solar cells ". Science, 2013. 342(6156): p. 317-318.
[41] Liu, D. and T.L. Kelly, " Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques ". Nature photonics, 2014. 8(2): p. 133-138.
[42] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, " Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells ". Nature materials, 2014. 13(9): p. 897-903.
[43] Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, " Compositional engineering of perovskite materials for high-performance solar cells ". Nature, 2015. 517(7535): p. 476-480.
[44] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, " High-performance photovoltaic perovskite layers fabricated through intramolecular exchange ". Science, 2015. 348(6240): p. 1234-1237.
[45] Rong, Y., L. Liu, A. Mei, X. Li, and H. Han, " Beyond efficiency: The challenge of stability in mesoscopic perovskite solar cells ". Advanced Energy Materials, 2015. 5(20).
[46] Ku, Z., Y. Rong, M. Xu, T. Liu, and H. Han, " Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode ". Scientific reports, 2013. 3: p. 3132.
[47] Zhang, L., T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei, and H. Han, " The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells ". Journal of Materials Chemistry A, 2015. 3(17): p. 9165-9170.
[48] Yang, Y., K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, and H. Han, " The size effect of TiO 2 nanoparticles on a printable mesoscopic perovskite solar cell ". Journal of Materials Chemistry A, 2015. 3(17): p. 9103-9107.
[49] Chen, J., Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li, and H. Han, " Solvent effect on the hole-conductor-free fully printable perovskite solar cells ". Nano Energy, 2016. 27: p. 130-137.
[50] Kojima, A., K. Teshima, T. Miyasaka, and Y. Shirai. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). in Meeting Abstracts. 2006. The Electrochemical Society.
[51] Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, " 6.5% efficient perovskite quantum-dot-sensitized solar cell ". Nanoscale, 2011. 3(10): p. 4088-4093.
[52] Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, " Sequential deposition as a route to high-performance perovskite-sensitized solar cells ". Nature, 2013. 499(7458): p. 316-319.
[53] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, " Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells ". Nature nanotechnology, 2014. 9(11): p. 927-932.
[54] Heo, J.H., S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-j. Kim, A. Sarkar, and M.K. Nazeeruddin, " Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors ". Nature photonics, 2013. 7(6): p. 486-491.
[55] Guo, Y., C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, " Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer ". Journal of Materials Chemistry A, 2014. 2(34): p. 13827-13830.
[56] Christians, J.A., R.C. Fung, and P.V. Kamat, " An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide ". Journal of the American Chemical Society, 2013. 136(2): p. 758-764.
[57] Qin, P., S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, " Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency ". Nature communications, 2014. 5.
[58] Rong, Y., Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao, " Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells ". Nanoscale, 2015. 7(24): p. 10595-10599.
[59] Pellet, N., P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, and M. Grätzel, " Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting ". Angewandte Chemie International Edition, 2014. 53(12): p. 3151-3157.
[60] Saliba, M., T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, " Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency ". Energy & Environmental Science, 2016. 9(6): p. 1989-1997.
[61] Wang, K.-C., J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, and P. Chen, " P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells ". Scientific reports, 2014. 4: p. 4756.
[62] Wang, K.-C., P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, " Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells ". ACS applied materials & interfaces, 2014. 6(15): p. 11851-11858.
[63] Chen, W., Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, and L. Han, " Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells ". Energy & Environmental Science, 2015. 8(2): p. 629-640.
[64] Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, " Mesoscopic CH 3 NH 3 PbI 3/TiO 2 heterojunction solar cells ". Journal of the American Chemical Society, 2012.
[65] Liu, T., L. Liu, M. Hu, Y. Yang, L. Zhang, A. Mei, and H. Han, " Critical parameters in TiO 2/ZrO 2/Carbon-based mesoscopic perovskite solar cell ". Journal of Power Sources, 2015. 293: p. 533-538.
[66] Chen, J., Y. Rong, A. Mei, Y. Xiong, T. Liu, Y. Sheng, P. Jiang, L. Hong, Y. Guan, and X. Zhu, " Hole‐Conductor‐Free Fully Printable Mesoscopic Solar Cell with Mixed‐Anion Perovskite CH3NH3PbI (3− x)(BF4) x ". Advanced Energy Materials, 2015.
[67] Cao, K., H. Li, S. Liu, J. Cui, Y. Shen, and M. Wang, " MAPbI 3− x Br x mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis ". Nanoscale, 2016. 8(16): p. 8839-8846.
[68] Hu, M., L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, " Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH 2 CH [double bond, length as m-dash] NH 2 PbI 3 ". Journal of Materials Chemistry A, 2014. 2(40): p. 17115-17121.
[69] Mei, A., X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, " A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability ". Science, 2014. 345(6194): p. 295-298.
[70] Hashmi, S.G., D. Martineau, X. Li, M. Ozkan, A. Tiihonen, M.I. Dar, T. Sarikka, S.M. Zakeeruddin, J. Paltakari, and P. Lund, " Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility ". Advanced Materials Technologies, 2017. 2(1).
[71] Snaith, H.J., A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, and W. Zhang, " Anomalous hysteresis in perovskite solar cells ". The journal of physical chemistry letters, 2014. 5(9): p. 1511-1515.
[72] Shao, Y., Z. Xiao, C. Bi, Y. Yuan, and J. Huang, " Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells ". Nature communications, 2014. 5.
[73] Wojciechowski, K., S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R.H. Friend, and A.K.-Y. Jen, " Heterojunction modification for highly efficient organic–inorganic perovskite solar cells ". Acs Nano, 2014. 8(12): p. 12701-12709.
[74] Azpiroz, J.M., E. Mosconi, J. Bisquert, and F. De Angelis, " Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation ". Energy & Environmental Science, 2015. 8(7): p. 2118-2127.
[75] Haruyama, J., K. Sodeyama, L. Han, and Y. Tateyama, " First-principles study of ion diffusion in perovskite solar cell sensitizers ". Journal of the American Chemical Society, 2015. 137(32): p. 10048-10051.
[76] Eames, C., J.M. Frost, P.R. Barnes, B.C. O’regan, A. Walsh, and M.S. Islam, " Ionic transport in hybrid lead iodide perovskite solar cells ". Nature communications, 2015. 6.
[77] Xiao, Z., Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, " Giant switchable photovoltaic effect in organometal trihalide perovskite devices ". Nature materials, 2015. 14(2): p. 193-198.
[78] Känzig, W., " Ferroelectrics and Antiferroeletrics ". Solid State Physics, 1957. 4: p. 1-197.
[79] Lines, M.E. and A.M. Glass, Principles and applications of ferroelectrics and related materials. 1977: Oxford university press.
[80] Frost, J.M., K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, and A. Walsh, " Atomistic origins of high-performance in hybrid halide perovskite solar cells ". Nano letters, 2014. 14(5): p. 2584-2590.
[81] Zheng, F., H. Takenaka, F. Wang, N.Z. Koocher, and A.M. Rappe, " First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI3–x Cl x ". The journal of physical chemistry letters, 2014. 6(1): p. 31-37.
[82] Fan, Z., J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K.P. Ong, K. Zeng, and J. Wang, " Ferroelectricity of CH3NH3PbI3 perovskite ". The journal of physical chemistry letters, 2015. 6(7): p. 1155-1161.
[83] Chen, B., X. Zheng, M. Yang, Y. Zhou, S. Kundu, J. Shi, K. Zhu, and S. Priya, " Interface band structure engineering by ferroelectric polarization in perovskite solar cells ". Nano Energy, 2015. 13: p. 582-591.
[84] Chen, H.-W., N. Sakai, M. Ikegami, and T. Miyasaka, " Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells ". The journal of physical chemistry letters, 2014. 6(1): p. 164-169.
[85] Kim, H.-S., I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, and N.-G. Park, " Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell ". The journal of physical chemistry letters, 2015. 6(22): p. 4633-4639.
[86] Kim, H.-S. and N.-G. Park, " Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer ". The journal of physical chemistry letters, 2014. 5(17): p. 2927-2934.
[87] Unger, E., E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, " Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells ". Energy & Environmental Science, 2014. 7(11): p. 3690-3698.
[88] Tress, W., N. Marinova, T. Moehl, S. Zakeeruddin, M.K. Nazeeruddin, and M. Grätzel, " Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field ". Energy & Environmental Science, 2015. 8(3): p. 995-1004.
[89] Wu, W., C. Jiang, and V.A. Roy, " Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts ". Nanoscale, 2015. 7(1): p. 38-58.
[90] Ke, W., G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, and J. Wan, " Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells ". Journal of the American Chemical Society, 2015. 137(21): p. 6730-6733.
[91] Mahmood, K., B.S. Swain, A.R. Kirmani, and A. Amassian, " Highly efficient perovskite solar cells based on a nanostructured WO 3–TiO 2 core–shell electron transporting material ". Journal of Materials Chemistry A, 2015. 3(17): p. 9051-9057.
[92] Shin, S.S., W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, and S.I. Seok, " High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 [thinsp][deg] C ". Nature communications, 2015. 6.
[93] Bera, A., K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, " Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells ". The Journal of Physical Chemistry C, 2014. 118(49): p. 28494-28501.
[94] Zhu, L., Z. Shao, J. Ye, X. Zhang, X. Pan, and S. Dai, " Mesoporous BaSnO 3 layer based perovskite solar cells ". Chemical Communications, 2016. 52(5): p. 970-973.
[95] Ke, W., G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, and X. Zhao, " Perovskite solar cell with an efficient TiO2 compact film ". ACS applied materials & interfaces, 2014. 6(18): p. 15959-15965.
[96] Xu, X., H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, and Q. Meng, " Highly efficient planar perovskite solar cells with a TiO 2/ZnO electron transport bilayer ". Journal of Materials Chemistry A, 2015. 3(38): p. 19288-19293.
[97] Baena, J.P.C., L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, and S.M. Zakeeruddin, " Highly efficient planar perovskite solar cells through band alignment engineering ". Energy & Environmental Science, 2015. 8(10): p. 2928-2934.
[98] Wu, W.-Q., D. Chen, R.A. Caruso, and Y.-B. Cheng, " Recent progress in hybrid perovskite solar cells based on n-type materials ". Journal of Materials Chemistry A, 2017.
[99] Kim, H.-S., J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, " High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer ". Nano letters, 2013. 13(6): p. 2412-2417.
[100] Jiang, Q., X. Sheng, Y. Li, X. Feng, and T. Xu, " Rutile TiO 2 nanowire-based perovskite solar cells ". Chemical Communications, 2014. 50(94): p. 14720-14723.
[101] Qin, P., M. Paulose, M.I. Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Grätzel, and M.K. Nazeeruddin, " Stable and efficient perovskite solar cells based on titania nanotube arrays ". Small, 2015. 11(41): p. 5533-5539.
[102] Huang, F., A.R. Pascoe, W.Q. Wu, Z. Ku, Y. Peng, J. Zhong, R.A. Caruso, and Y.B. Cheng, " Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells ". Advanced Materials, 2017.
[103] Wu, W.Q., F. Huang, D. Chen, Y.B. Cheng, and R.A. Caruso, " Solvent‐Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16% ". Advanced Energy Materials, 2016.
[104] Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, " Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells ". Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
[105] Rong, Y., Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, " Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes ". The journal of physical chemistry letters, 2014. 5(12): p. 2160-2164.
[106] Yu, Y., J. Li, D. Geng, J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, and X. Wang, " Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures ". ACS nano, 2015. 9(1): p. 564-572.
[107] Wu, W.Q., F. Huang, D. Chen, Y.B. Cheng, and R.A. Caruso, " Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole‐Blocking and Efficient Light‐Harvesting for High‐Performance Mesoscopic Perovskite Solar Cells ". Advanced Functional Materials, 2015. 25(21): p. 3264-3272.
[108] Hui-Seon Kim, C.-R.L., Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, " Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% ". scientific reports, 2012.
[109] Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, " Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber ". Science, 2013. 342(6156): p. 341-344.
[110] Kazim, S., M.K. Nazeeruddin, M. Grätzel, and S. Ahmad, " Perovskite as light harvester: a game changer in photovoltaics ". Angewandte Chemie International Edition, 2014. 53(11): p. 2812-2824.
[111] Jeon, N.J., J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, and S.I. Seok, " Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials ". Journal of the American Chemical Society, 2013. 135(51): p. 19087-19090.
[112] Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.-P.C. Baena, " Efficient luminescent solar cells based on tailored mixed-cation perovskites ". Science advances, 2016. 2(1): p. e1501170.
[113] Hörantner, M., W. Zhang, M. Saliba, K. Wojciechowski, and H. Snaith, " Templated microstructural growth of perovskite thin films via colloidal monolayer lithography ". Energy & Environmental Science, 2015. 8(7): p. 2041-2047.
[114] Wojciechowski, K., M. Saliba, T. Leijtens, A. Abate, and H.J. Snaith, " Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency ". Energy & Environmental Science, 2014. 7(3): p. 1142-1147.
[115] Tiwana, P., P. Docampo, M.B. Johnston, H.J. Snaith, and L.M. Herz, " Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells ". ACS nano, 2011. 5(6): p. 5158-5166.
[116] Snaith, H.J. and C. Ducati, " SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency ". Nano letters, 2010. 10(4): p. 1259-1265.
[117] Ponseca Jr, C.S., T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T.r. Pascher, T. Harlang, P. Chabera, T. Pullerits, and A. Stepanov, " Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination ". Journal of the American Chemical Society, 2014. 136(14): p. 5189-5192.
[118] Chen, B.-X., H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, " Achieving high-performance planar perovskite solar cell with Nb-doped TiO 2 compact layer by enhanced electron injection and efficient charge extraction ". Journal of Materials Chemistry A, 2016. 4(15): p. 5647-5653.
[119] Pathak, S.K., A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, and N. Noel, " Performance and stability enhancement of dye‐sensitized and Perovskite solar cells by Al doping of TiO2 ". Advanced Functional Materials, 2014. 24(38): p. 6046-6055.
[120] Roose, B., K.C. Gödel, S. Pathak, A. Sadhanala, J.P.C. Baena, B.D. Wilts, H.J. Snaith, U. Wiesner, M. Grätzel, and U. Steiner, " Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 ". Advanced Energy Materials, 2016. 6(2).
[121] Giordano, F., A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, " Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells ". Nature communications, 2016. 7.
[122] Wang, J., M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, and H. Yu, " Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer ". Applied Physics Letters, 2015. 106(12): p. 121104.
[123] Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, " Interface engineering of highly efficient perovskite solar cells ". Science, 2014. 345(6196): p. 542-546.
[124] Zhang, X., Z. Bao, X. Tao, H. Sun, W. Chen, and X. Zhou, " Sn-doped TiO 2 nanorod arrays and application in perovskite solar cells ". RSC Advances, 2014. 4(109): p. 64001-64005.
[125] Nagaoka, H., F. Ma, D.W. deQuilettes, S.M. Vorpahl, M.S. Glaz, A.E. Colbert, M.E. Ziffer, and D.S. Ginger, " Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes ". The journal of physical chemistry letters, 2015. 6(4): p. 669-675.
[126] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, " Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells ". Nature nanotechnology, 2014. 9(11): p. 927.
[127] Van Overstraeten, R.J. and R.P. Mertens, " Heavy doping effects in silicon ". Solid-State Electronics, 1987. 30(11): p. 1077-1087.
[128] Liang, P.W., C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, and A.K.Y. Jen, " Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells ". Advanced materials, 2014. 26(22): p. 3748-3754.
[129] Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, " Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide ". Journal of the American Chemical Society, 2015. 137(27): p. 8696-8699.
[130] Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, " Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition ". Energy & Environmental Science, 2014. 7(9): p. 2934-2938.
[131] Li, W., J. Fan, J. Li, Y. Mai, and L. Wang, " Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17% ". Journal of the American Chemical Society, 2015. 137(32): p. 10399-10405.
[132] Wakamiya, A., M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, " Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers ". Chemistry Letters, 2014. 43(5): p. 711-713.
[133] Miyamae, H., Y. Numahata, and M. Nagata, " The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2 (dmso) 2 ". Chemistry Letters, 1980. 9(6): p. 663-664.
[134] Neouze, M.-A. and U. Schubert, " Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands ". Monatshefte für Chemie/Chemical Monthly, 2008. 139(3): p. 183-195. |