博碩士論文 104324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:52.14.148.63
姓名 林威志(Wei-Jhih Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
(Influence of the Titanium Dioxide Nano-particles Size on the Performance of Mesoscopic Perovskite Solar Cell)
相關論文
★ 高效率染料敏化太陽能電池及製備次模組元件之研究★ 高穿透低面電阻之氟摻雜氧化錫薄膜製備與不同霧度之氟摻雜氧化錫薄膜對染料敏化太陽電池效能的影響
★ 製備大面積染料敏化太陽能電池與其長時間穩定性之研究★ 利用溶液工程製備 高效率鈣鈦礦太陽能電池之研究
★ 高效率穩定型染料敏化太陽能模組於不同測試條件下元件表現之研究★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究
★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 鈣鈦礦膜缺陷控制及製備高效率鈣鈦礦太陽能電池★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用
★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討
★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討★ 蒸氣相成長金屬有機框架材料合成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年鈣鈦礦太陽能電池蓬勃發展,憑藉其低製作成本、高效率等顯著優點,迅速成為太陽能電池領域的研究重點。其中又以正結構鈣鈦礦太陽能電池具備較傑出的光電轉換效率,但元件量測上普遍存在J-V遲滯現象,造成太陽能電池在量測時因正逆掃曲線不吻合,嚴重降低電池效率量測的不準確性。
本論文利用水熱法合成高純度銳鈦礦(anatase)二氧化鈦奈米顆粒,並透過調控高壓釜之反應操作條件,合成出不同的粒徑之二氧化鈦奈米粒子,以此探討二氧化鈦介孔層對正結構鈣鈦礦太陽電池的影響,並搭配二流體化噴塗高溫裂解方式製備二氧化鈦緻密層與透過鋰鹽(LiTFSI)摻雜優化二氧化鈦介孔層,提高電子傳遞效率,有效降低正結構鈣鈦礦太陽能電池於量測中的遲滯現象。本研究最佳條件是以粒徑22 nm的二氧化鈦粒子所製備之光電元件,其光電轉換效率達逆掃值18.46%、正掃值16.37%,且遲滯因子僅0.092。
另外再以正結構全網印介觀鈣鈦礦太陽能電池系統搭配不同粒徑二氧化鈦作驗證,其結果與標準正結構趨勢相符,證明電子傳輸層中二氧化鈦粒徑是影響正結構鈣鈦礦太陽能電池光電轉換特性之關鍵。透過提高二氧化鈦介孔層比表面積能有效提高鈣鈦礦層與二氧化鈦介孔層的接觸面積,使光生電子傳遞更快速。此系統以粒徑22 nm二氧化鈦奈米粒子所製備的元件有最佳效率表現,其電池優化後效率達10.86%,並於室溫環境下經過450小時仍穩定維持在10.16%,仍保有原始效率96%。
摘要(英)
In recent years, organic–inorganic perovskite based solar cells have got sub-stantial attention due to their low fabrication cost and excellent photovoltaic properties. Although the power conversion efficiency of the perovskite solar cells have achieved over than 20%, anomalous hysteresis in current–voltage curves remain as major challenge, which cause inaccuracy of the PCE measurements.
In this work, we use hydrothermal method to synthesize high purity anatase titanium dioxide nanoparticles by controlling the reaction conditions of the auto-clave. We investigate the particle size effect of titanium dioxide mesoporous layer on conventional mesoscopic perovskite solar cells, and with spray pyroly-sis deposition method to prepare titanium dioxide dense layer and through the lithium (LiTFSI) doping to optimize titanium dioxide mesoporous layer, im-prove the efficiency of electronic transmission and reduce the hysteresis of the conventional mesoscopic perovskite solar cells in the measurement effectively. The best performance of the cells is 22 nm particle size, its power conversion ef-ficiency of reverse scan is up to 18.46%, forward scan is 16.37%, and the hyste-resis index is decrease to 0.092.
In addition, we verify the particle size effect of titanium dioxide mesoporous by the system of fully printable mesoscopic perovskite solar cells, the results are match to the conventional structural tendency. It is proved that the particle size of titanium dioxide in the electron transport layer is the key to the photoelectric conversion characteristics of the conventional structure perovskite solar cells. In-creasing the specific surface area of titanium dioxide mesoporous layer improves the contact area between the perovskite layer and the titanium dioxide mesopo-rous layer effectively. The rate of the electron injection from perovskite into tita-nium dioxide becomes faster, resulting in higher injection quantum efficiency after the electron-hole separation. This system has the best performance of the components prepared with 22 nm particle size of titanium dioxide, the efficiency of cells up to 10.86% after optimization. It is stable for 450 hours in ambient air and still retain 96% of original efficiency.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 二氧化鈦奈米顆粒
★ 全網印鈣鈦礦太陽能電池
關鍵字(英)
論文目次
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池發展歷史與種類簡介 3
1.2.1 無機太陽能電池 5
1.2.2 有機太陽能電池 6
1.2.2.1 小分子有機太陽能電池(Molecular solar cells) 6
1.2.2.2 高分子有機太陽能電池(Polymer solar cells) 7
1.2.2.3 染料敏化太陽能電池 (Dye-sensitized solar cells) 8
1.3 文獻回顧 10
1.3.1 鈣鈦礦結構源起 10
1.3.2 鈣鈦礦太陽能電池發展史 12
1.3.3 介觀結構鈣鈦礦太陽能電池元件結構演進 15
1.3.3.1 正結構介觀鈣鈦礦太陽能電池 (Conventional mesoscopic perovskite solar cells) 15
1.3.3.2 反結構介觀鈣鈦礦太陽能電池 (Inverted-type mesoscopic perovskite solar cells) 18
1.3.3.3 無電洞傳輸材料介觀結構鈣鈦礦太陽能電池(HTM-free MPSCs) 19
1.4 電流-電壓遲滯現象(J-V HYSTERESIS) 24
1.4.1 缺陷位捕獲與釋出載子(Trapping/Detrapping) 25
1.4.2離子遷移(Ion migration) 27
1.4.3 鐵電現象(Ferroelectricity) 30
1.4.4 元件結構與材料(Device architecture and materials) 31
1.5電子傳導層對正結構鈣鈦礦電池的影響 33
1.5.1緻密層-電子傳導層(Compact electron transport layer ) 34
1.5.2介孔層-電子傳導層(Mesoporous electron transport layer) 36
1.5.3 元素摻雜-電子傳導層(Elemental doping electron transport layer) 40
1.6 研究動機 41
第二章 實驗方法 43
2.1實驗藥品及儀器 43
2.2 材料合成 46
2.2.1甲基胺碘(CH3NH3I)合成 46
2.2.2二氧化鈦漿料(TiO2 paste)合成 47
2.3 正結構介觀鈣鈦礦太陽能電池製備 49
2.3.1鈣鈦礦前驅液配置 50
2.3.2配置二氧化鈦緻密層溶液方法 50
2.3.3配置二氧化鈦介孔層溶液方法 50
2.3.4配置電洞傳輸層(Spiro-OMeTAD)溶液方法 51
2.3.5正結構介觀鈣鈦礦太陽能電池元件製作 51
2.3.6全網印介觀鈣鈦礦太陽能電池製作 56
2.4儀器分析原理 59
2.4.1掃描式電子顯微鏡 (Scanning Electron Microscope , Hittachi S-800) 59
2.4.2太陽光模擬器 (Solar Simulator , YSS-50A) 60
2.4.3太陽能電池外部量測效率量測系統 (Incident Photon to Current Conversion Efficiency, IPCE) 61
2.4.4 X光繞射儀 (X-Ray Diffractometer , BRUKER ) 62
2.4.5 紫外光/可見光光譜儀 (UV/VIS/NIR Spectrophotometer , Hitachi U-4100) 63
2.4.6光激發螢光光譜儀、時間解析之螢光光譜儀 (Photoluminescence, PL, UniRAM)、( Time-resolved photoluminescence spectrometer) 64
第三章 結果與討論 66
3.1正結構介觀鈣鈦礦太陽能電池 66
3.1.1 二氧化鈦緻密層對鈣鈦礦電池之影響 66
3.1.2 二氧化鈦介孔層其厚度對鈣鈦礦元件之影響 71
3.1.3鋰離子摻雜濃度對鈣鈦礦元件之影響 76
3.1.4不同粒徑二氧化鈦奈米顆粒對正結構介觀鈣鈦礦元件之影響 79
3.2全網印介觀鈣鈦礦太陽能電池 91
3.2.1全網印系統鈣鈦礦太陽能電池二氧化鋯介孔層最適化 92
3.2.2不同鈣鈦礦前驅液溶劑對元件之影響 95
3.2.3不同鈣鈦礦前驅液濃度對元件之影響 97
3.2.4五胺戊酸混合陽離子鈣鈦礦材料 99
3.2.5不同濃度之混合陽離子鈣鈦礦前驅液對元件之影響 101
3.2.6二氧化鈦緻密層後處理對元件之影響 102
3.2.7二氧化鈦奈米顆粒粒徑對全網印介觀鈣鈦礦元件之影響 104
3.2.8全網印介觀鈣鈦礦元件之穩定性測試 106
第四章 結論 107
第五章 參考文獻 109
參考文獻

[1] Kazmerski, L.L., " http://www.nrel.gov/ncpv/images/efficiency_chart.jpg ". NREL Accessed 13.03.2016, 2016.
[2] Peck, L., " Solar history: Alexandre Edmond Becquerellar. ". Solar Energy World Solar Panels, 2011.
[3] Chodos, A., " Bell Labs Demonstrates the First Practical Silicon Solar Cell ". APS Physics, 2009.
[4] Nathan Spielberg, B.D.A., " Seven Ideas that Shook the Universe, Trade Version ". John Wiley & Sons., 1987.
[5] Ohl, R.S., " Light-Sensitive Electric Device ". U. S. Patent 2402662, 1946.
[6] Kuang, Y., M.D. Vece, J.K. Rath, L. Dijk, and R.E. Schropp, " Elongated nanostructures for radial junction solar cells ". Rep Prog Phys, 2013. 76(10): p. 106502.
[7] Shockley, W. and H.J. Queisser, " Detailed balance limit of efficiency of p‐n junction solar cells ". Journal of applied physics, 1961. 32(3): p. 510-519.
[8] Kearns, D. and M. Calvin, " The photovoltaic effect and photoconductivity in laminated organicsystems ". Journal of Chemical Physics, 1958. 29(UCRL--8441).
[9] Tang, C.W., " Two-layer organic photovoltaic cell ". Applied Physics Letters, 1986. 48(2): p. 183.
[10] Peumans, P., A. Yakimov, and S.R. Forrest, " Small molecular weight organic thin-film photodetectors and solar cells ". Journal of Applied Physics, 2003. 93(7): p. 3693-3723.
[11] Tsukamoto, J., H. Ohigashi, K. Matsumura, and A. Takahashi, " A Schottky barrier type solar cell using polyacetylene ". Japanese Journal of Applied Physics, 1981. 20(2): p. L127.
[12] Padinger, F., R.S. Rittberger, and N.S. Sariciftci, " Effects of postproduction treatment on plastic solar cells ". Advanced Functional Materials, 2003. 13(1): p. 85-88.
[13] Tsubomura, H., M. Matsumura, Y. Nomura, and T. Amamiya, " Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell ". Nature, 1976. 261(5559): p. 402-403.
[14] Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, " Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers ". Nature chemistry, 2014. 6(3): p. 242-247.
[15] Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, " Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency ". science, 2011. 334(6056): p. 629-634.
[16] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, " Organometal halide perovskites as visible-light sensitizers for photovoltaic cells ". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[17] Davidson, M.W. and G.E. Lofgren, " Photomicrography in the geological sciences ". Journal of Geological Education, 1991. 39(5): p. 403-418.
[18] Green, M.A., A. Ho-Baillie, and H.J. Snaith, " The emergence of perovskite solar cells ". Nature Photonics, 2014. 8(7): p. 506-514.
[19] Xing, G., N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, " Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 ". Science, 2013. 342(6156): p. 344-347.
[20] Tanaka, K., T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, " Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3 ". Solid state communications, 2003. 127(9): p. 619-623.
[21] Sun, S., T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, and Y.M. Lam, " The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells ". Energy & Environmental Science, 2014. 7(1): p. 399-407.
[22] O’regan, B. and M. Grfitzeli, " A low-cost, high-efficiency solar cell based on dye-sensitized ". nature, 1991. 353(6346): p. 737-740.
[23] Hinsch, A., J. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, and J. Ferber, " Long‐term stability of dye‐sensitised solar cells ". Progress in Photovoltaics: Research and Applications, 2001. 9(6): p. 425-438.
[24] Asghar, M.I., K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, and P. Lund, " Review of stability for advanced dye solar cells ". Energy & Environmental Science, 2010. 3(4): p. 418-426.
[25] Wang, L., X. Fang, and Z. Zhang, " Design methods for large scale dye-sensitized solar modules and the progress of stability research ". Renewable and Sustainable energy reviews, 2010. 14(9): p. 3178-3184.
[26] Harikisun, R. and H. Desilvestro, " Long-term stability of dye solar cells ". Solar Energy, 2011. 85(6): p. 1179-1188.
[27] Bach, U., D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, " Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies ". Nature, 1998. 395(6702): p. 583-585.
[28] Krüger, J., R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, " High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination ". Applied Physics Letters, 2001. 79(13): p. 2085-2087.
[29] Krüger, J., R. Plass, M. Grätzel, and H.-J. Matthieu, " Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis (4, 4′-dicarboxy-2, 2′ bipyridine)-bis (isothiocyanato) ruthenium (II) ". Applied Physics Letters, 2002. 81(2): p. 367-369.
[30] Schmidt-Mende, L., S.M. Zakeeruddin, and M. Grätzel, " Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye ". Applied Physics Letters, 2005. 86(1): p. 013504.
[31] Snaith, H.J., R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, and M. Grätzel, " Charge collection and pore filling in solid-state dye-sensitized solar cells ". Nanotechnology, 2008. 19(42): p. 424003.
[32] Snaith, H.J., A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, and M. Grätzel, " Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture ". Nano Letters, 2007. 7(11): p. 3372-3376.
[33] Dualeh, A., F. De Angelis, S. Fantacci, T. Moehl, C. Yi, F. Kessler, E. Baranoff, M.K. Nazeeruddin, and M. Grätzel, " Influence of donor groups of organic D− π–a dyes on open-circuit voltage in solid-state dye-sensitized solar cells ". The Journal of Physical Chemistry C, 2011. 116(1): p. 1572-1578.
[34] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, " Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% ". Scientific reports, 2012. 2: p. 591.
[35] Han, L., N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, and R. Yamanaka, " Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance ". Applied Physics Letters, 2005. 86(21): p. 213501.
[36] Chiba, Y., A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, " Dye-sensitized solar cells with conversion efficiency of 11.1% ". Japanese Journal of Applied Physics, 2006. 45(7L): p. L638.
[37] Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, " Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells ". Nano letters, 2013. 13(4): p. 1764-1769.
[38] Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, " Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites ". Science, 2012. 338(6107): p. 643-647.
[39] Liu, M., M.B. Johnston, and H.J. Snaith, " Efficient planar heterojunction perovskite solar cells by vapour deposition ". Nature, 2013. 501(7467): p. 395-398.
[40] Hodes, G., " Perovskite-based solar cells ". Science, 2013. 342(6156): p. 317-318.
[41] Liu, D. and T.L. Kelly, " Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques ". Nature photonics, 2014. 8(2): p. 133-138.
[42] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, " Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells ". Nature materials, 2014. 13(9): p. 897-903.
[43] Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, " Compositional engineering of perovskite materials for high-performance solar cells ". Nature, 2015. 517(7535): p. 476-480.
[44] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, " High-performance photovoltaic perovskite layers fabricated through intramolecular exchange ". Science, 2015. 348(6240): p. 1234-1237.
[45] Rong, Y., L. Liu, A. Mei, X. Li, and H. Han, " Beyond efficiency: The challenge of stability in mesoscopic perovskite solar cells ". Advanced Energy Materials, 2015. 5(20).
[46] Ku, Z., Y. Rong, M. Xu, T. Liu, and H. Han, " Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode ". Scientific reports, 2013. 3: p. 3132.
[47] Zhang, L., T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei, and H. Han, " The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells ". Journal of Materials Chemistry A, 2015. 3(17): p. 9165-9170.
[48] Yang, Y., K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, and H. Han, " The size effect of TiO 2 nanoparticles on a printable mesoscopic perovskite solar cell ". Journal of Materials Chemistry A, 2015. 3(17): p. 9103-9107.
[49] Chen, J., Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li, and H. Han, " Solvent effect on the hole-conductor-free fully printable perovskite solar cells ". Nano Energy, 2016. 27: p. 130-137.
[50] Kojima, A., K. Teshima, T. Miyasaka, and Y. Shirai. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). in Meeting Abstracts. 2006. The Electrochemical Society.
[51] Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, " 6.5% efficient perovskite quantum-dot-sensitized solar cell ". Nanoscale, 2011. 3(10): p. 4088-4093.
[52] Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, " Sequential deposition as a route to high-performance perovskite-sensitized solar cells ". Nature, 2013. 499(7458): p. 316-319.
[53] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, " Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells ". Nature nanotechnology, 2014. 9(11): p. 927-932.
[54] Heo, J.H., S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-j. Kim, A. Sarkar, and M.K. Nazeeruddin, " Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors ". Nature photonics, 2013. 7(6): p. 486-491.
[55] Guo, Y., C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, " Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer ". Journal of Materials Chemistry A, 2014. 2(34): p. 13827-13830.
[56] Christians, J.A., R.C. Fung, and P.V. Kamat, " An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide ". Journal of the American Chemical Society, 2013. 136(2): p. 758-764.
[57] Qin, P., S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, " Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency ". Nature communications, 2014. 5.
[58] Rong, Y., Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, and Y. Yao, " Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells ". Nanoscale, 2015. 7(24): p. 10595-10599.
[59] Pellet, N., P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, and M. Grätzel, " Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting ". Angewandte Chemie International Edition, 2014. 53(12): p. 3151-3157.
[60] Saliba, M., T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, " Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency ". Energy & Environmental Science, 2016. 9(6): p. 1989-1997.
[61] Wang, K.-C., J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, and P. Chen, " P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells ". Scientific reports, 2014. 4: p. 4756.
[62] Wang, K.-C., P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, " Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells ". ACS applied materials & interfaces, 2014. 6(15): p. 11851-11858.
[63] Chen, W., Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, and L. Han, " Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells ". Energy & Environmental Science, 2015. 8(2): p. 629-640.
[64] Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, " Mesoscopic CH 3 NH 3 PbI 3/TiO 2 heterojunction solar cells ". Journal of the American Chemical Society, 2012.
[65] Liu, T., L. Liu, M. Hu, Y. Yang, L. Zhang, A. Mei, and H. Han, " Critical parameters in TiO 2/ZrO 2/Carbon-based mesoscopic perovskite solar cell ". Journal of Power Sources, 2015. 293: p. 533-538.
[66] Chen, J., Y. Rong, A. Mei, Y. Xiong, T. Liu, Y. Sheng, P. Jiang, L. Hong, Y. Guan, and X. Zhu, " Hole‐Conductor‐Free Fully Printable Mesoscopic Solar Cell with Mixed‐Anion Perovskite CH3NH3PbI (3− x)(BF4) x ". Advanced Energy Materials, 2015.
[67] Cao, K., H. Li, S. Liu, J. Cui, Y. Shen, and M. Wang, " MAPbI 3− x Br x mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis ". Nanoscale, 2016. 8(16): p. 8839-8846.
[68] Hu, M., L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, " Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH 2 CH [double bond, length as m-dash] NH 2 PbI 3 ". Journal of Materials Chemistry A, 2014. 2(40): p. 17115-17121.
[69] Mei, A., X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, " A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability ". Science, 2014. 345(6194): p. 295-298.
[70] Hashmi, S.G., D. Martineau, X. Li, M. Ozkan, A. Tiihonen, M.I. Dar, T. Sarikka, S.M. Zakeeruddin, J. Paltakari, and P. Lund, " Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility ". Advanced Materials Technologies, 2017. 2(1).
[71] Snaith, H.J., A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, and W. Zhang, " Anomalous hysteresis in perovskite solar cells ". The journal of physical chemistry letters, 2014. 5(9): p. 1511-1515.
[72] Shao, Y., Z. Xiao, C. Bi, Y. Yuan, and J. Huang, " Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells ". Nature communications, 2014. 5.
[73] Wojciechowski, K., S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R.H. Friend, and A.K.-Y. Jen, " Heterojunction modification for highly efficient organic–inorganic perovskite solar cells ". Acs Nano, 2014. 8(12): p. 12701-12709.
[74] Azpiroz, J.M., E. Mosconi, J. Bisquert, and F. De Angelis, " Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation ". Energy & Environmental Science, 2015. 8(7): p. 2118-2127.
[75] Haruyama, J., K. Sodeyama, L. Han, and Y. Tateyama, " First-principles study of ion diffusion in perovskite solar cell sensitizers ". Journal of the American Chemical Society, 2015. 137(32): p. 10048-10051.
[76] Eames, C., J.M. Frost, P.R. Barnes, B.C. O’regan, A. Walsh, and M.S. Islam, " Ionic transport in hybrid lead iodide perovskite solar cells ". Nature communications, 2015. 6.
[77] Xiao, Z., Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, " Giant switchable photovoltaic effect in organometal trihalide perovskite devices ". Nature materials, 2015. 14(2): p. 193-198.
[78] Känzig, W., " Ferroelectrics and Antiferroeletrics ". Solid State Physics, 1957. 4: p. 1-197.
[79] Lines, M.E. and A.M. Glass, Principles and applications of ferroelectrics and related materials. 1977: Oxford university press.
[80] Frost, J.M., K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, and A. Walsh, " Atomistic origins of high-performance in hybrid halide perovskite solar cells ". Nano letters, 2014. 14(5): p. 2584-2590.
[81] Zheng, F., H. Takenaka, F. Wang, N.Z. Koocher, and A.M. Rappe, " First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI3–x Cl x ". The journal of physical chemistry letters, 2014. 6(1): p. 31-37.
[82] Fan, Z., J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K.P. Ong, K. Zeng, and J. Wang, " Ferroelectricity of CH3NH3PbI3 perovskite ". The journal of physical chemistry letters, 2015. 6(7): p. 1155-1161.
[83] Chen, B., X. Zheng, M. Yang, Y. Zhou, S. Kundu, J. Shi, K. Zhu, and S. Priya, " Interface band structure engineering by ferroelectric polarization in perovskite solar cells ". Nano Energy, 2015. 13: p. 582-591.
[84] Chen, H.-W., N. Sakai, M. Ikegami, and T. Miyasaka, " Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells ". The journal of physical chemistry letters, 2014. 6(1): p. 164-169.
[85] Kim, H.-S., I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, and N.-G. Park, " Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell ". The journal of physical chemistry letters, 2015. 6(22): p. 4633-4639.
[86] Kim, H.-S. and N.-G. Park, " Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer ". The journal of physical chemistry letters, 2014. 5(17): p. 2927-2934.
[87] Unger, E., E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, " Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells ". Energy & Environmental Science, 2014. 7(11): p. 3690-3698.
[88] Tress, W., N. Marinova, T. Moehl, S. Zakeeruddin, M.K. Nazeeruddin, and M. Grätzel, " Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field ". Energy & Environmental Science, 2015. 8(3): p. 995-1004.
[89] Wu, W., C. Jiang, and V.A. Roy, " Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts ". Nanoscale, 2015. 7(1): p. 38-58.
[90] Ke, W., G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, and J. Wan, " Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells ". Journal of the American Chemical Society, 2015. 137(21): p. 6730-6733.
[91] Mahmood, K., B.S. Swain, A.R. Kirmani, and A. Amassian, " Highly efficient perovskite solar cells based on a nanostructured WO 3–TiO 2 core–shell electron transporting material ". Journal of Materials Chemistry A, 2015. 3(17): p. 9051-9057.
[92] Shin, S.S., W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, and S.I. Seok, " High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 [thinsp][deg] C ". Nature communications, 2015. 6.
[93] Bera, A., K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, and T. Wu, " Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells ". The Journal of Physical Chemistry C, 2014. 118(49): p. 28494-28501.
[94] Zhu, L., Z. Shao, J. Ye, X. Zhang, X. Pan, and S. Dai, " Mesoporous BaSnO 3 layer based perovskite solar cells ". Chemical Communications, 2016. 52(5): p. 970-973.
[95] Ke, W., G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, and X. Zhao, " Perovskite solar cell with an efficient TiO2 compact film ". ACS applied materials & interfaces, 2014. 6(18): p. 15959-15965.
[96] Xu, X., H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, and Q. Meng, " Highly efficient planar perovskite solar cells with a TiO 2/ZnO electron transport bilayer ". Journal of Materials Chemistry A, 2015. 3(38): p. 19288-19293.
[97] Baena, J.P.C., L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, and S.M. Zakeeruddin, " Highly efficient planar perovskite solar cells through band alignment engineering ". Energy & Environmental Science, 2015. 8(10): p. 2928-2934.
[98] Wu, W.-Q., D. Chen, R.A. Caruso, and Y.-B. Cheng, " Recent progress in hybrid perovskite solar cells based on n-type materials ". Journal of Materials Chemistry A, 2017.
[99] Kim, H.-S., J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, " High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer ". Nano letters, 2013. 13(6): p. 2412-2417.
[100] Jiang, Q., X. Sheng, Y. Li, X. Feng, and T. Xu, " Rutile TiO 2 nanowire-based perovskite solar cells ". Chemical Communications, 2014. 50(94): p. 14720-14723.
[101] Qin, P., M. Paulose, M.I. Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Grätzel, and M.K. Nazeeruddin, " Stable and efficient perovskite solar cells based on titania nanotube arrays ". Small, 2015. 11(41): p. 5533-5539.
[102] Huang, F., A.R. Pascoe, W.Q. Wu, Z. Ku, Y. Peng, J. Zhong, R.A. Caruso, and Y.B. Cheng, " Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells ". Advanced Materials, 2017.
[103] Wu, W.Q., F. Huang, D. Chen, Y.B. Cheng, and R.A. Caruso, " Solvent‐Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16% ". Advanced Energy Materials, 2016.
[104] Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, " Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells ". Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
[105] Rong, Y., Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, " Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes ". The journal of physical chemistry letters, 2014. 5(12): p. 2160-2164.
[106] Yu, Y., J. Li, D. Geng, J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, and X. Wang, " Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures ". ACS nano, 2015. 9(1): p. 564-572.
[107] Wu, W.Q., F. Huang, D. Chen, Y.B. Cheng, and R.A. Caruso, " Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole‐Blocking and Efficient Light‐Harvesting for High‐Performance Mesoscopic Perovskite Solar Cells ". Advanced Functional Materials, 2015. 25(21): p. 3264-3272.
[108] Hui-Seon Kim, C.-R.L., Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, " Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% ". scientific reports, 2012.
[109] Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, " Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber ". Science, 2013. 342(6156): p. 341-344.
[110] Kazim, S., M.K. Nazeeruddin, M. Grätzel, and S. Ahmad, " Perovskite as light harvester: a game changer in photovoltaics ". Angewandte Chemie International Edition, 2014. 53(11): p. 2812-2824.
[111] Jeon, N.J., J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, and S.I. Seok, " Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials ". Journal of the American Chemical Society, 2013. 135(51): p. 19087-19090.
[112] Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.-P.C. Baena, " Efficient luminescent solar cells based on tailored mixed-cation perovskites ". Science advances, 2016. 2(1): p. e1501170.
[113] Hörantner, M., W. Zhang, M. Saliba, K. Wojciechowski, and H. Snaith, " Templated microstructural growth of perovskite thin films via colloidal monolayer lithography ". Energy & Environmental Science, 2015. 8(7): p. 2041-2047.
[114] Wojciechowski, K., M. Saliba, T. Leijtens, A. Abate, and H.J. Snaith, " Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency ". Energy & Environmental Science, 2014. 7(3): p. 1142-1147.
[115] Tiwana, P., P. Docampo, M.B. Johnston, H.J. Snaith, and L.M. Herz, " Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells ". ACS nano, 2011. 5(6): p. 5158-5166.
[116] Snaith, H.J. and C. Ducati, " SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency ". Nano letters, 2010. 10(4): p. 1259-1265.
[117] Ponseca Jr, C.S., T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T.r. Pascher, T. Harlang, P. Chabera, T. Pullerits, and A. Stepanov, " Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination ". Journal of the American Chemical Society, 2014. 136(14): p. 5189-5192.
[118] Chen, B.-X., H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, " Achieving high-performance planar perovskite solar cell with Nb-doped TiO 2 compact layer by enhanced electron injection and efficient charge extraction ". Journal of Materials Chemistry A, 2016. 4(15): p. 5647-5653.
[119] Pathak, S.K., A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, and N. Noel, " Performance and stability enhancement of dye‐sensitized and Perovskite solar cells by Al doping of TiO2 ". Advanced Functional Materials, 2014. 24(38): p. 6046-6055.
[120] Roose, B., K.C. Gödel, S. Pathak, A. Sadhanala, J.P.C. Baena, B.D. Wilts, H.J. Snaith, U. Wiesner, M. Grätzel, and U. Steiner, " Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 ". Advanced Energy Materials, 2016. 6(2).
[121] Giordano, F., A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, " Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells ". Nature communications, 2016. 7.
[122] Wang, J., M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, and H. Yu, " Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer ". Applied Physics Letters, 2015. 106(12): p. 121104.
[123] Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, " Interface engineering of highly efficient perovskite solar cells ". Science, 2014. 345(6196): p. 542-546.
[124] Zhang, X., Z. Bao, X. Tao, H. Sun, W. Chen, and X. Zhou, " Sn-doped TiO 2 nanorod arrays and application in perovskite solar cells ". RSC Advances, 2014. 4(109): p. 64001-64005.
[125] Nagaoka, H., F. Ma, D.W. deQuilettes, S.M. Vorpahl, M.S. Glaz, A.E. Colbert, M.E. Ziffer, and D.S. Ginger, " Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes ". The journal of physical chemistry letters, 2015. 6(4): p. 669-675.
[126] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, " Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells ". Nature nanotechnology, 2014. 9(11): p. 927.
[127] Van Overstraeten, R.J. and R.P. Mertens, " Heavy doping effects in silicon ". Solid-State Electronics, 1987. 30(11): p. 1077-1087.
[128] Liang, P.W., C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, and A.K.Y. Jen, " Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells ". Advanced materials, 2014. 26(22): p. 3748-3754.
[129] Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, " Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide ". Journal of the American Chemical Society, 2015. 137(27): p. 8696-8699.
[130] Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, " Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition ". Energy & Environmental Science, 2014. 7(9): p. 2934-2938.
[131] Li, W., J. Fan, J. Li, Y. Mai, and L. Wang, " Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17% ". Journal of the American Chemical Society, 2015. 137(32): p. 10399-10405.
[132] Wakamiya, A., M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, " Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers ". Chemistry Letters, 2014. 43(5): p. 711-713.
[133] Miyamae, H., Y. Numahata, and M. Nagata, " The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2 (dmso) 2 ". Chemistry Letters, 1980. 9(6): p. 663-664.
[134] Neouze, M.-A. and U. Schubert, " Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands ". Monatshefte für Chemie/Chemical Monthly, 2008. 139(3): p. 183-195.
指導教授 張博凱、李坤穆 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明