博碩士論文 104324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.204.140
姓名 劉柏毅(Bo-Yi Liou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響
(Effect of anti-solvent treatment on fabrication of large area perovskite solar cells)
相關論文
★ 高效率染料敏化太陽能電池及製備次模組元件之研究★ 高穿透低面電阻之氟摻雜氧化錫薄膜製備與不同霧度之氟摻雜氧化錫薄膜對染料敏化太陽電池效能的影響
★ 製備大面積染料敏化太陽能電池與其長時間穩定性之研究★ 利用溶液工程製備 高效率鈣鈦礦太陽能電池之研究
★ 高效率穩定型染料敏化太陽能模組於不同測試條件下元件表現之研究★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究
★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 鈣鈦礦膜缺陷控制及製備高效率鈣鈦礦太陽能電池★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用
★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討
★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討★ 蒸氣相成長金屬有機框架材料合成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,因鈣鈦礦光伏電池轉換效率從2009年的3.8%到目前的>21%,效率快速提升引起全球廣泛的關注。因其優異的高吸光系數、低激子結合能、載子遷移率高且電子壽命長以及可調控的能帶隙等,使得鈣鈦礦材料適合作為光伏電池的吸光層。但是鈣鈦礦成膜時的表面覆蓋率和形貌控制,則需藉由調整其成核速率與晶粒成長速率來控制。為了探討此問題,本研究在製備CH3NH3PbI3鈣鈦礦膜時導入不同種類的反溶劑,使反溶劑與原溶液混溶後,將原溶液從不飽和區導向介穩態區或過飽和區,使其快速多處成核。因此,我們選擇了幾種不同的反溶劑,包括甲苯(TL)、氯仿(CF)、氯苯(CB)、二氯苯(DCB)、異丙醇(IPA)。研究發現,若能將鈣鈦礦前驅液快速導向介穩態區,則能製作出較高覆蓋性和表面平整的鈣鈦礦膜,低介電常數(<5) 、低偶極矩(<1)的溶劑更適合用於製作高品質鈣鈦礦膜,例如甲苯(TL)溶劑。選擇對的反溶劑是製作高效率鈣鈦礦光伏電池的重要環節。進而我們發現若將兩種反混合溶劑,能使鈣鈦礦前驅液有更大的驅動力進入介穩態區。因此我們可以藉由滴旋混合反溶劑的方法,得到結晶性佳、高附蓋性且平整的鈣鈦礦膜製作光伏電池,可以有效提升電池的填充因子(FF)與效率。最後我們使以TL/DCB (v/v = 5/5)作為混合反溶劑,製作n-i-p結構鈣鈦礦光伏電池,最佳元件效率可達18.01% (AM1.5G, 100mW/cm2)。另一方面,混合反溶劑法在p-i-n結構中亦有相同的效果,針對p-i-n結構的光伏電池探討,我們更進一步嘗試在混合反溶劑(TL/DCB)中添加微量的PCBM (0.1wt%),希望能在滴旋過程中修補鈣鈦礦層中的晶界缺陷,提高電子收集效率,以提升元件填充因子(FF)與短路電流(JSC),在最佳化後的p-i-n結構電池效率可從15.37%提升到16.31% (AM1.5G, 100mW/cm2)。
最後,將優化後的反溶劑條件製備大面積鈣鈦礦層,並結合本實驗室自行設計了5cm x 5cm的玻璃基板內部串聯鈣鈦礦太陽能電池模組(活性面積為10.56cm2)。以n-i-p結構的鈣鈦礦太陽能電池模組效率可以達到14.56%, (AM1.5G, 100mW/cm2),而p-i-n結構的鈣鈦礦模組可以達到15.02% (AM1.5G, 100mW/cm2)。另外,本研究針對p-i-n結構的光伏模組部分,進一步嘗試改變p層材料,以NiO金屬氧化物薄膜取代PEDOT:PSS導電高分子,模組效率可以達到15.68% (AM1.5G, 100mW/cm2)。
摘要(英)
Recently, hybrid organic-inorganic perovskite solar cells has attracted much attention, as its power conversion efficiency (PCE) has leapt from 3.8% in 2009 to the current world record of 21.0%. This is attributed to its excellent photoelectronic properties such as a remarkably high absorption coefficient; a low exciton binding energy; a carrier diffusion length in the micrometer range, caused by recombination occurring on a timescale of hundreds of nanoseconds; and a tunable energy bandgap. Because of on these properties, the perovskite materials are suitable as light absorbers in the field of solar cells as well light-emitting devices. However, the surface coverage and morphology of perovskite film, controlled by the nucleation rate and the grain growth rate. To solve this problem, this work explores various anti-solvent treatments for the perovskite film. Let the anti-solvent drives the perovskite precursor into the metastable zone or the supersaturation zone. Here, we make a systematic study of different types of anti-solvents including toluene (TL), chloroform (CF), chlorobenzene (CB), dichlorobenzene (DCB), isopropyl alcohol (IPA). We found that an anti-solvent with a low dielectric constant(<5) and low dipole moment(<1) is most the suitable for perovskite solar cell preparation, such as toluene. Therefore, selection of the anti-solvent become an important factor when fabricating high-performance perovskite solar cells. Furthermore, we found that mixed two anti-solvents, can get more driving force to let the perovskite precursor into the metastable zone. So, we can fabricate high crystal, high coverage and smooth perovskite film to make perovskite solar cell by mixed anti-solvents treatment. It can improve the fill factor of perovskite solar cell. We use TL/DCB(v/v=5/5) as anti-solvent, can let the n-i-p type perovskite solar cell toward 18.01%(AM1.5G, 100mW/cm2). On the other hand, there are the same effect of mixed anti-solvent in p-i-n type perovskite solar cell. In p-i-n perovskite solar cell, we add 0.1wt% PCBM in TL/DCB. It can fill the grain boundary in perovskite film, increase the electron collection, improve the fill factor and current density. After the optimize, the efficiency can toward 16.31% from 15.37% (AM1.5G, 100mW/cm2).
Finally, we use the optimize anti-solvent condition combine the 5cm×5cm perovskite module pattern designed by our lab(active area 10.56 cm2). For n-i-p type perovskite sub-module, the efficiency is about 14.56%(AM1.5G, 100mW/cm2). For p-i-n type perovskite sub-module, the efficiency is about 15.02%(AM1.5G, 100mW/cm2). Moreover, we use NiOx as hole transport layer instead of PEDOT:PSS, the efficiency can increase to 15.68% under AM1.5G, 100mW/cm2.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 鈣鈦礦太陽能模組
★ 反溶劑
關鍵字(英)
論文目次
致謝 II
中文摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XVI
第一章 緒論 1
1-1前言 1
1-2太陽能電池種類介紹 3
1-2-1有機太陽能電池 3
1-2-2染料敏化太陽能電池 5
1-2-3鈣鈦礦太陽能電池 7
1-3文獻回顧 11
1-4 研究動機 20
1-5 本研究之鈣鈦礦太陽能模組結構設計說明 21
第二章 實驗方法 22
2-1 實驗藥品及儀器 22
2-2 鈣鈦礦材料的製備 26
2-2-1甲基胺碘(CH3NH3I)合成 26
2-2-2 鈣鈦礦溶液配置 27
2-2-3 配置製備TiO2緻密層溶液方法 27
2-2-4 配置製備TiO2多孔層溶液方法 27
2-2-5電子傳輸層(PC61BM)、電洞傳輸層(Spiro-OMeTAD)溶液配置 28
2-3鈣鈦礦太陽能電池製作方法 28
2-3-1基板清洗與UV-Ozone 29
2-3-2 p-i-n結構太陽能電池製作方法 30
2-3-3 n-i-p結構太陽能電池製作方法 31
2-3-4 小面積( 2cm x 2.5cm )與大面積( 5cm x 5cm )鈣鈦礦膜之製程 33
2-3-5 移除對電極與蒸鍍銀電極 34
2-4 儀器分析原理 36
2-4-1掃描式電子顯微鏡 36
2-4-2太陽光模擬器 37
2-4-3太陽能電池外部量測效率量測系統 38
2-4-4 X光繞射儀 39
2-4-5紫外光/可見光光譜儀 40
2-4-6光激發螢光光譜儀、時間解析之螢光光譜儀 41
第三章 結果與討論 43
3-1反溶劑對鈣鈦礦膜之影響 43
3-2混合反溶劑與鈣鈦礦膜之關係 51
3-2-1不同混合反溶劑對於鈣鈦礦膜之影響 51
3-2-2不同混合反溶劑應用於p-i-n結構鈣鈦礦太陽能電池 57
3-2-2添加不同濃度PCBM於TL/DCB中用於p-i-n結構鈣鈦礦太陽電池處理 59
3-2-4不同混合反溶劑應用於n-i-p結構鈣鈦礦太陽能電池 63
3-2-5不同活性面積之影響 67
3-2-6不同掃描速率之影響 69
3-3製備大面積鈣鈦礦太陽能電池 71
3-3-1大面積鈣鈦礦膜之優化 71
3-3-2 p-i-n結構太陽能次模組 78
3-3-3 n-i-p結構太陽能次模組 82
第四章 結論 88
第五章 參考文獻 90
參考文獻

[1] Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop," Solar cell efficiency tables (Version 45)". Progress in Photovoltaics: Research and Applications, 2015. 23(1): p. 1-9.
[2] Chen, C.-C., W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang," An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%". Advanced Materials, 2014. 26(32): p. 5670-5677.
[3] O′Regan, B. and M. Gratzel," A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films". Nature, 1991. 353(6346): p. 737-740.
[4] K. Nazeeruddin, M., P. Pechy, and M. Gratzel," Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex". Chemical Communications, 1997(18): p. 1705-1706.
[5] Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel," Conversion of light to electricityby cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes". Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
[6] Magne, C., M. Urien, and T. Pauporté," Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes". Rsc Advances, 2013. 3(18): p. 6315-6318.
[7] Kakiage, K., Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya," Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes". Chemical Communications, 2015. 51(88): p. 15894-15897.
[8] Toyoda, T., T. Sano, J. Nakajima, S. Doi, S. Fukumoto, A. Ito, T. Tohyama, M. Yoshida, T. Kanagawa, T. Motohiro, T. Shiga, K. Higuchi, H. Tanaka, Y. Takeda, T. Fukano, N. Katoh, A. Takeichi, K. Takechi, and M. Shiozawa," Outdoor performance of large scale DSC modules". Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 203-207.
[9] El-shaer, A., M. Tadros, and M. Khalifa," Effect of Light intensity and Temperature on Crystalline Silicon Solar Modules Parameters". International Journal of Emerging Technology and Advanced Engineering, 2014. 4(8).
[10] Lee, C.-P., C.-A. Lin, T.-C. Wei, M.-L. Tsai, Y. Meng, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau, and J.-H. He," Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes". Nano Energy, 2015. 18: p. 109-117.
[11] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka," Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[12] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park," Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports, 2012. 2: p. 591.
[13] Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith," Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites". Science, 2012. 338(6107): p. 643.
[14] Liu, M., M.B. Johnston, and H.J. Snaith," Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature, 2013. 501(7467): p. 395-398.
[15] Green, M.A., A. Ho-Baillie, and H.J. Snaith," The emergence of perovskite solar cells". Nat Photon, 2014. 8(7): p. 506-514.
[16] Miyata, A., A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, and R.J. Nicholas," Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites". Nat Phys, 2015. 11(7): p. 582-587.
[17] Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith," Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber". Science, 2013. 342(6156): p. 341.
[18] Eperon, G.E., S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith," Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science, 2014. 7(3): p. 982-988.
[19] Stranks, S.D. and H.J. Snaith," Metal-halide perovskites for photovoltaic and light-emitting devices". Nat Nano, 2015. 10(5): p. 391-402.
[20] Gratzel, M.," The light and shade of perovskite solar cells". Nat Mater, 2014. 13(9): p. 838-842.
[21] Wang, Z., Z. Shi, T. Li, Y. Chen, and W. Huang," Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion". Angewandte Chemie International Edition, 2016.
[22] Giustino, F. and H.J. Snaith," Toward Lead-Free Perovskite Solar Cells". ACS Energy Letters, 2016. 1(6): p. 1233-1240.
[23] Eperon, G.E., T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.-W. Wang, D.P. McMeekin, G. Volonakis, R.L. Milot, R. May, A. Palmstrom, D.J. Slotcavage, R.A. Belisle, J.B. Patel, E.S. Parrott, R.J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L.M. Herz, M.B. Johnston, M.D. McGehee, and H.J. Snaith," Perovskite-perovskite tandem photovoltaics with optimized band gaps". Science, 2016. 354(6314): p. 861-865.
[24] Jesper Jacobsson, T., J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Gratzel, and A. Hagfeldt," Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells". Energy & Environmental Science, 2016. 9(5): p. 1706-1724.
[25] Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," Compositional engineering of perovskite materials for high-performance solar cells". Nature, 2015. 517(7535): p. 476-480.
[26] Zhang, H., J. Shi, X. Xu, L. Zhu, Y. Luo, D. Li, and Q. Meng," Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%". Journal of Materials Chemistry A, 2016. 4(40): p. 15383-15389.
[27] Kim, H., K.-G. Lim, and T.-W. Lee," Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers". Energy & Environmental Science, 2016. 9(1): p. 12-30.
[28] Li, C.-Z., H.-L. Yip, and A.K.Y. Jen," Functional fullerenes for organic photovoltaics". Journal of Materials Chemistry, 2012. 22(10): p. 4161-4177.
[29] Yip, H.-L. and A.K.Y. Jen," Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells". Energy & Environmental Science, 2012. 5(3): p. 5994-6011.
[30] Chueh, C.-C., C.-Z. Li, and A.K.Y. Jen," Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells". Energy & Environmental Science, 2015. 8(4): p. 1160-1189.
[31] Liu, Y., L.A. Renna, M. Bag, Z.A. Page, P. Kim, J. Choi, T. Emrick, D. Venkataraman, and T.P. Russell," High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer". ACS Applied Materials & Interfaces, 2016. 8(11): p. 7070-7076.
[32] Liu, T., K. Chen, Q. Hu, R. Zhu, and Q. Gong," Inverted Perovskite Solar Cells: Progresses and Perspectives". Advanced Energy Materials, 2016. 6(17): p. 1600457-n/a.
[33] Meng, L., J. You, T.-F. Guo, and Y. Yang," Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells". Accounts of Chemical Research, 2016. 49(1): p. 155-165.
[34] Jeng, J.-Y., Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen," CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells". Advanced Materials, 2013. 25(27): p. 3727-3732.
[35] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok," Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nat Mater, 2014. 13(9): p. 897-903.
[36] Hu, L., W. Wang, H. Liu, J. Peng, H. Cao, G. Shao, Z. Xia, W. Ma, and J. Tang," PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells". Journal of Materials Chemistry A, 2015. 3(2): p. 515-518.
[37] Kulkarni, S.A., T. Baikie, P.P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar," Band-gap tuning of lead halide perovskites using a sequential deposition process". Journal of Materials Chemistry A, 2014. 2(24): p. 9221-9225.
[38] Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang," Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process". Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
[39] Bi, C., Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang," Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells". Nature Communications, 2015. 6: p. 7747.
[40] Salim, T., S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, and Y.M. Lam," Perovskite-based solar cells: impact of morphology and device architecture on device performance". Journal of Materials Chemistry A, 2015. 3(17): p. 8943-8969.
[41] Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han," Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition". Energy & Environmental Science, 2014. 7(9): p. 2934-2938.
[42] Chae, J., Q. Dong, J. Huang, and A. Centrone," Chloride Incorporation Process in CH(3)NH(3)PbI(3-x)Cl(x) Perovskites via Nanoscale Bandgap Maps". Nano letters, 2015. 15(12): p. 8114-8121.
[43] Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park," Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide". Journal of the American Chemical Society, 2015. 137(27): p. 8696-8699.
[44] Ren, Y., B. Duan, Y. Xu, Y. Huang, Z. Li, L. Hu, T. Hayat, H. Wang, J. Zhu, and S. Dai," New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach". Science China Materials, 2017. 60(5): p. 392-398.
[45] Li, Y., J. Wang, Y. Yuan, X. Dong, and P. Wang," Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: the role of intermediate phase content in the as-prepared thin films". Sustainable Energy & Fuels, 2017.
[46] Yu, Y., S. Yang, L. Lei, and Y. Liu," Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance". Nanoscale, 2017. 9(7): p. 2569-2578.
[47] Zhu, W., C. Bao, B. Lv, F. Li, Y. Yi, Y. Wang, J. Yang, X. Wang, T. Yu, and Z. Zou," Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells". Journal of Materials Chemistry A, 2016. 4(32): p. 12535-12542.
[48] Xia, B., Z. Wu, H. Dong, J. Xi, W. Wu, T. Lei, K. Xi, F. Yuan, B. Jiao, L. Xiao, Q. Gong, and X. Hou," Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air". Journal of Materials Chemistry A, 2016. 4(17): p. 6295-6303.
[49] Zhou, Y., M. Yang, O.S. Game, W. Wu, J. Kwun, M.A. Strauss, Y. Yan, J. Huang, K. Zhu, and N.P. Padture," Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells". ACS Applied Materials & Interfaces, 2016. 8(3): p. 2232-2237.
[50] Song, T.-B., Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, and Y. Yang," Perovskite solar cells: film formation and properties". Journal of Materials Chemistry A, 2015. 3(17): p. 9032-9050.
[51] Kim, H.-B., H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J.Y. Kim," Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells". Nanoscale, 2014. 6(12): p. 6679-6683.
[52] Wu, W.-Q., D. Chen, F. Huang, Y.-B. Cheng, and R.A. Caruso," Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(32): p. 12463-12470.
[53] Yu, Y., S. Yang, L. Lei, Q. Cao, J. Shao, S. Zhang, and Y. Liu," Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency". ACS Applied Materials & Interfaces, 2017. 9(4): p. 3667-3676.
[54] Noel, N.K., S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Horantner, M.B. Johnston, R.J. Nicholas, D.T. Moore, and H.J. Snaith," A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films". Energy & Environmental Science, 2017. 10(1): p. 145-152.
[55] Moon, S.J., J.H. Yum, L. Löfgren, A. Walter, L. Sansonnens, M. Benkhaira, S. Nicolay, J. Bailat, and C. Ballif," Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules". IEEE Journal of Photovoltaics, 2015. 5(4): p. 1087-1092.
[56] Kumar, C.V., G. Sfyri, D. Raptis, E. Stathatos, and P. Lianos," Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material". RSC Advances, 2015. 5(5): p. 3786-3791.
[57] Matteocci, F., S. Razza, F. Di Giacomo, S. Casaluci, G. Mincuzzi, T.M. Brown, A. D′Epifanio, S. Licoccia, and A. Di Carlo," Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process". Physical Chemistry Chemical Physics, 2014. 16(9): p. 3918-3923.
[58] Seo, J., S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, and S.I. Seok," Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells". Energy & Environmental Science, 2014. 7(8): p. 2642-2646.
[59] Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith," Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells". Advanced Functional Materials, 2014. 24(1): p. 151-157.
[60] Barrows, A.T., A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey," Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition". Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
[61] Manser, J.S., M.I. Saidaminov, J.A. Christians, O.M. Bakr, and P.V. Kamat," Making and Breaking of Lead Halide Perovskites". Accounts of Chemical Research, 2016. 49(2): p. 330-338.
[62] Dai, S., K. Wang, J. Weng, Y. Sui, Y. Huang, S. Xiao, S. Chen, L. Hu, F. Kong, X. Pan, C. Shi, and L. Guo," Design of DSC panel with efficiency more than 6%". Solar Energy Materials and Solar Cells, 2005. 85(3): p. 447-455.
[63] Jaegermann, W., A. Klein, and T. Mayer," Interface Engineering of Inorganic Thin-Film Solar Cells – Materials-Science Challenges for Advanced Physical Concepts". Advanced Materials, 2009. 21(42): p. 4196-4206.
[64] Thompson, C.V.," Solid-State Dewetting of Thin Films". Annual Review of Materials Research, 2012. 42(1): p. 399-434.
[65] Liu, J., Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, and L. Han," A dopant-free hole-transporting material for efficient and stable perovskite solar cells". Energy & Environmental Science, 2014. 7(9): p. 2963-2967.
[66] Azhar, F., L.P. Alessandro, G. Francesco Di, C. Simone, M. Fabio, W. Qamar, R. Muhammad, C. Aldo Di, M.B. Thomas, and J. Rajan," Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods". Nanotechnology, 2015. 26(49): p. 494002.
[67] Di Giacomo, F., V. Zardetto, A. D′Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, and T.M. Brown," Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates". Advanced Energy Materials, 2015. 5(8): p. 1401808-n/a.
[68] Hwang, K., Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, and D. Vak," Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells". Advanced Materials, 2015. 27(7): p. 1241-1247.
[69] Schmidt, T.M., T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, and F.C. Krebs," Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes". Advanced Energy Materials, 2015. 5(15): p. 1500569-n/a.
[70] Razza, S., F. Di Giacomo, F. Matteocci, L. Cinà, A.L. Palma, S. Casaluci, P. Cameron, A. D′Epifanio, S. Licoccia, A. Reale, T.M. Brown, and A. Di Carlo," Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process". Journal of Power Sources, 2015. 277: p. 286-291.
[71] Vak, D., K. Hwang, A. Faulks, Y.-S. Jung, N. Clark, D.-Y. Kim, G.J. Wilson, and S.E. Watkins," 3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells". Advanced Energy Materials, 2015. 5(4): p. 1401539-n/a.
[72] Gouda, L., R. Gottesman, S. Tirosh, E. Haltzi, J. Hu, A. Ginsburg, D.A. Keller, Y. Bouhadana, and A. Zaban," Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells". Nanoscale, 2016. 8(12): p. 6386-6392.
[73] Agresti, A., S. Pescetelli, A.L. Palma, A.E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso, and A. Di Carlo," Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area". ACS Energy Letters, 2017. 2(1): p. 279-287.
[74] Zhao, Y. and K. Zhu," Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells". The Journal of Physical Chemistry Letters, 2014. 5(23): p. 4175-4186.
[75] Seo, H., M.-K. Son, J.-K. Kim, J. Choi, S. Choi, S.-K. Kim, and H.-J. Kim," Analysis of current loss from a series-parallel combination of dye-sensitized solar cells using electrochemical impedance spectroscopy". Photonics and Nanostructures - Fundamentals and Applications, 2012. 10(4): p. 568-574.
[76] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park," Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells". Nat Nano, 2014. 9(11): p. 927-932.
[77] Zhou, Y., M. Yang, A.L. Vasiliev, H.F. Garces, Y. Zhao, D. Wang, S. Pang, K. Zhu, and N.P. Padture," Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells". Journal of Materials Chemistry A, 2015. 3(17): p. 9249-9256.
[78] Hao, F., C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, and M.G. Kanatzidis," Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells". Journal of the American Chemical Society, 2015. 137(35): p. 11445-11452.
[79] Chern, Y.-C., H.-R. Wu, Y.-C. Chen, H.-W. Zan, H.-F. Meng, and S.-F. Horng," Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation". AIP Advances, 2015. 5(8): p. 087125.
[80] Nie, W., H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite," High-efficiency solution-processed perovskite solar cells with millimeter-scale grains". Science, 2015. 347(6221): p. 522-525.
[81] Zhou, Y., M. Yang, W. Wu, A.L. Vasiliev, K. Zhu, and N.P. Padture," Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells". Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184.
[82] Liu, J., C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau," Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell". ACS Applied Materials & Interfaces, 2015. 7(43): p. 24008-24015.
[83] Li, C., J. Sleppy, N. Dhasmana, M. Soliman, L. Tetard, and J. Thomas," A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells". Journal of Materials Chemistry A, 2016. 4(30): p. 11648-11655.
[84] Chiang, C.-H. and C.-G. Wu," Bulk heterojunction perovskite–PCBM solar cells with high fill factor". Nat Photon, 2016. 10(3): p. 196-200.
[85] Zhang, F., W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T.J.S. Dennis, X. Li, S. Wang, Y. Xiao, S.M. Zakeeruddin, D. Bi, and M. Grätzel," Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability". Advanced Materials, 2017. 29(17): p. 1606806-n/a.
[86] Wu, Y., X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han," Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering". Nature Energy, 2016. 1: p. 16148.
[87] Kim, H.-S. and N.-G. Park," Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer". The Journal of Physical Chemistry Letters, 2014. 5(17): p. 2927-2934.
[88] Tress, W., N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Gratzel," Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field". Energy & Environmental Science, 2015. 8(3): p. 995-1004.
[89] Yin, X., Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Lin," High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact". ACS Applied Materials & Interfaces, 2017. 9(3): p. 2439-2448.
[90] Nguyen, W.H., C.D. Bailie, E.L. Unger, and M.D. McGehee," Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells". Journal of the American Chemical Society, 2014. 136(31): p. 10996-11001.
指導教授 張博凱、李坤穆 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明