博碩士論文 104223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.139.239.157
姓名 陳雅雯(Ya-Wen Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含isoxazole、1,3,4-oxa(thia)diazole三雜環以及BF2-chelated結構之桿狀、盤狀液晶性質探討
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在系列一中成功合成出以1,3,4-oxadiazole或1,3,4-thiadiazole為中心硬核且含有兩個isoxazoles之對稱三雜環衍生化合物1b3c,藉由改變中心雜環與側鏈基數目,來觀察對液晶行為表現的影響。從結果可得知,化合物1b擁有N/SmC的桿狀型液晶相,與實驗室慧珊學姊之化合物Ia相互比較,Ia與1b具有相同的液晶相產生,且化合物1b之液晶相溫度範圍比Ia廣,推測原因為1,3,4-thiadiazole之exocyclic angle比1,3,4-oxadiazole的大,分子形狀較呈線性,有利於桿狀液晶的行成;總側鏈基數目為4之化合物2ab,縱使縮短長碳鏈之碳數改變分子長度,仍因其分子結構類似於板狀,並無出現液晶性質;總側鏈基數目增加至6之化合物3ab經由偏光紋理圖與powder X-ray diffraction實驗結果判定為Colh盤狀液晶,並將粉末繞射所得到的數據做理論計算模擬出化合物3ab在液晶相中的堆疊情形,此外,我們發現化合物3b之液晶相範圍比3a廣,推測原因為將中心雜環上的氧原子替換成硫原子後增加了分子的dipole moment,使得3b分子有較大的極化現象,分子與分子間之吸引力增加有利於分子堆疊,盤狀液晶相溫度範圍增加。
第二系列成功以substituted tetraketonates 2ac為配位基,與boron difluoride (BF2)形成錯合物1ac,其中化合物1a和1b並無液晶相產生,而化合物1c (n = 8, 10, 12) 因達適合的軟端硬核比例,經由偏光紋理圖與powder X-ray diffraction實驗結果判定為Colh盤狀液晶,另外從培養出的化合物1a (n = 14)單晶探討分子之排列情形與作用力多寡。化合物1ac ( n = 8) 以UV可見光光譜、螢光光譜探討該分子的光學性質,從結果可得知增加推電子的烷氧基數目,使得最大放光波長紅移,即 max = 538 (1a) < 641 (1b) < 708 nm (1c)。化合物1c為目前第一個含雙BF2結構之盤狀液晶。
系列三以substituted 2-(2’-hydroxyphenyl)benzoxazole 2ab為配位基與boron difluoride (BF2)形成錯合物1ab,其中化合物1a (n = 6, 8, 12, 16)皆為單向型SmC相液晶,化合物1a (n = 1)和1b皆因軟鏈比例太少和排列情形不同於具有液晶性質之化合物而無液晶的性質出現,從培養出的化合物1a (n = 8)單晶探討分子之排列情形與作用力多寡,並藉由化合物1a (n = 8)之單晶排列與1a (n = 12)之XRD實驗結果可推論1a (n = 12)分子在液晶相時符合SmC相的傾斜排列。化合物1a與2a (all n = 8, 12, 16)以UV可見光光譜、螢光光譜探討光學性質,由結果可知改變烷氧鏈碳數長短對最大吸收波長與最大放光波長不造成影響,化合物2a受激發後發微微的藍光、化合物1a則發很亮的紫光,另外化合物2a 受excited state intramolecular proton transfer (ESIPT) effect影響,其Stokes shift大於化合物1a。
摘要(英)
Nowadays more and more liquid-crystalline compounds containing five-membered heterocycles are the subject of much investigation. These heterocyclic structures generally incorporated of such electronegative atoms (S, O or N atom) often resulted in a reduced or lowering symmetry for the overall molecules or/and a stronger polar induction. Quite a few examples, including pyrazoles, isoxazole, 1,3,4-oxaziazoles, and others have been prepared and investigated in our group. Most of them formed smectic phases whereas, only a few of them exhibited columnar phases.
In the first part, six new series of symmetry structures based on oxadiazole or thiadiazole as core 1a-3b containing isoxazoles and different numbers of terminal alkyl chains. Compared with compounds Ia, made by Hui-Shan Chen, compounds 1b have substituted oxygen with sulfur to increase temperature range of calamitic phases. Compounds 2a and 2b did not exhibit liquid crystal behaviour because of their catenar stuctures. Increasing the number of terminal alkyl chains, compounds 3a and 3b exhibit columnar mesogen behaviour. Compounds 3b have more wider temperature range of mesogenic phases than those of compounds 3a, which is attributed to the substitution of oxygen with sulfur to increase the dipole moments and packing of molecules. A value of Ncell = 3.82 and 4.04 within a column slice of 9.0 Å thick was obtained for compound 3a and 3b, respectively, indicating that two molecules were correlated within columns in Colh phases.
Complexes or adducts containing boron difluoride (BF2) have been paid much attention during the past years. Many known boron difluoride complexes, widely investigated as fluorescent materials showed potential applications in many areas; such as biological imaging, molecular probes, electroluminescent devices, photosensitizers and others. However, only a few examples were reported among mesogenic applications.
In the second part, three new series of bis(boron difluoride) complexes 1ac derived from substituted tetraketonates 2ac were reported, and their mesomorphic and optical properties were also investigated. The single crystal of nonmesogenic diboron complex 1a (n = 14) was obtained, and its single crystal and molecular structures were resolved. Results appeared that bis(BF2) complexes 1ab were nonmesogenic and 1c (n = 8, 10, 12) exhibited enantiotropic columnar mesophases. A value of Ncell = 2.702.86 within a column slice of 9.0 Å thick was obtained for compound 1c, indicating that a single discshaped molecule was stacked within columns in Colh phases. Bis(BF2) complexes 1ac (n = 8) possess a pronounced yellowred emission in solution at room temperature. The luminescent emission showed a strong dependence with structural moiety incorporated with a max = 538 (1a) < 641 (1b) < 708 nm (1c). To our best knowledge, this is the first example of columnar bis(BF2) complexes.
In the third part, two new series of mono(boron difluoride) complexes 1ab derived from substituted 2-(2’-hydroxyphenyl)benzoxazole 2ab were reported, and their mesomorphic and optical properties were also investigated. The single crystal of mesogenic boron complex 1a (n = 8) was obtained, and its single crystal and molecular structures were resolved. Results appeared that mono(BF2) complexes 1a (n = 6, 8, 12, 16) exhibited monotropic smectic C phases, however, 1a (n = 1) and 1b were not mesogenic. Ligand 2a (n = 8, 12, 16) and mono(BF2) complex 1a (n = 8, 12, 16) possess a pronounced blue and violet emission in solution at room temperature, respectively. Because of excited state intramolecular proton transfer (ESIPT) effect, ligand 2a exhibited a larger Stokes shift than complex 1a.
關鍵字(中) ★ 液晶 關鍵字(英) ★ liquid crystal
論文目次
中文摘要 i
Abstract iii
謝誌 v
第一章 緒論 1
1-1 液晶簡介 2
1-2 液晶相形成條件 3
1-3 液晶相分類 4
1-3-1 向列型液晶 5
1-3-2 層列型液晶 6
1-3-3 盤狀液晶 7
1-4 五圓雜環簡介 8
1-5 Boron difluoride complex簡介 10
1-6 研究動機 12
1-6-1 系列一研究動機 13
1-6-2 系列二研究動機 14
1-6-3 系列三研究動機 15
第二章 實驗部分 17
2-1 實驗藥品 18
2-2 儀器設備 21
2-3 實驗流程 24
2-3-1系列一之實驗流程 24
2-3-2系列二之實驗流程 25
2-3-3系列三之實驗流程 26
2-4實驗步驟 27
2-4-1系列一之合成 27
2-4-2系列二之合成 44
2-4-3系列三之合成 53
第三章 結果與討論 63
3-1 系列一化合物之探討 64
3-1-1系列一之結構與代號 64
3-1-2系列一化合物之偏光紋理圖(POM) 65
3-1-3系列一化合物之熱微差掃描分析儀(DSC) 69
3-1-4 化合物 1b、3a和3b 之 Powder X-ray 分析與分子模擬排列 73
3-1-5系列一化合物3a和3b光學性質探討 80
3-2 系列二化合物性質探討 81
3-2-1系列二之結構與代號 81
3-2-2系列二化合物1H NMR探討 82
3-2-3系列二化合物之偏光紋理圖(POM) 85
3-2-4系列二化合物之熱微差掃描分析儀(DSC) 87
3-2-5系列二化合物之熱重分析(TGA) 91
3-2-6系列二化合物1c之 Powder X-ray 分析與分子模擬排列 92
3-2-7系列二化合物1a之單晶探討 95
3-2-8系列二化合物光學性質探討 102
3-3 系列三化合物之探討 106
3-3-1系列三之結構與代號 106
3-3-2系列三化合物1H NMR探討 107
3-3-3系列三化合物之偏光紋理圖(POM) 109
3-3-4系列三化合物之熱微差掃描分析儀(DSC) 111
3-3-5系列三化合物之熱重分析(TGA) 115
3-3-6系列三化合物1a與2a之 Powder X-ray 分析 116
3-3-7系列三化合物1a之單晶探討 119
3-3-8系列三化合物光學性質探討 129
第四章 結論 133
4-1 系列一結論 134
4-2 系列二結論 135
4-3 系列三結論 136
參考文獻 137
附圖 143
附表 179
參考文獻
1. P. J. Collings and M. Hird, 楊怡寬, 郭蘭生, 鄭殷立, 液晶化學及物理入門, 2001.
2. H. T. Nguyen, C. Destrade and J. Malthete, Adv. Mater., 1997, 9, 375388.
3. (a) C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 38853896.; (b) J. Liu, E. M. Murray and V. G. Young, Chem. Commun., 2003, 15, 19041905.
4. A. Grafe and D. Janietz, Chem. Mater., 2005, 17, 49794984.
5. C. R. Wen, Y. J. Wang and C. K. Lai, Chem. Mater., 2005, 17, 16461654.
6. E. J. Foster and C. Lavigueur, J. Mater. Chem., 2005, 15, 40624068.
7. F. Morale and R. W. Date, Chem. Eur. J., 2003, 9, 24842501.
8. B. Roy, N. De and K. C. Majumdar, Chemistry, 2012, 18, 1456014588.
9. A. Kamal, E. V. Bharathi, J. S. Reddy, M. J. Ramaiah, D. Dastagiri, M. K. Reddy, A.Viswanath, T. L. Reddy, T. B. Shaik, S. N. C. V. L. Pushpavalli and M. P. Bhadra, Eur J Med Chem., 2011, 46, 691703.
10. D. H. Brown and P. Styring, Liq. Cryst., 2003, 30, 2330.
11. U. M. Kauhanka and M. M. Kauhanka, Liq. Cryst., 2006, 33, 121127.
12. H. Gallardo, F. R. Bryk, A. A. Vieira, T. E. Frizon, G. Conte, B. S. Souza, J. Eccher, I. H. Bechtold, Liq. Cryst., 2009, 36, 839845.
13. H. M. Kuo, S. L. Tsai, G. H. Lee, H. S. Sheu, C. K. Lai, Tetrahedron., 2013, 69, 618626.
14. R. Iglesias, J. L. Serrano, T. Sierra, Liq. Cryst., 1997, 22, 37–46.
15. J. Barbera, R. Gimenez, J. L. Serrano, R. Alcala, B. Villacampa, J. Villalba, I. Ledoux, J. Zyss, Liq. Cryst., 1997, 22, 265273.
16. C. Qian, M. Liu, G. Hong, P. Xue, P. Gong and R. Lu, Org. Biomol. Chem., 2015, 13, 2986–2998.
17. M. Santra, H. Moon, M. H. Park, T. W. Lee, Y. K. Kim and K. H. Ahn, Chem. Eur. J., 2012, 18, 9886–9893.
18. X. Li and Y. A. Son, Dyes Pigm., 2014, 107, 182–187.
19. J. Massue, D. Frath, G. Ulrich, P. Retailleau and R. Ziessel, Org. Lett., 2012, 14, 230–233.
20. G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser., Nat. Mater., 2009, 8, 747–751.
21. S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen and D. F. O′Shea, J. Mater. Chem. B, 2014, 2, 7459–7463.
22. J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077–10082.
23. A. Ojida, T. Sakamoto, M. A. Inoue, S. H. Fujishima, G. Lippens and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543–6548.
24. T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4953–4972.
25. M. Chapran, E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Grazulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara, ACS Appl. Mater. Interfaces, 2017, 9, 4750−4757.
26. Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang and X. Dong, J. Mater. Chem. B, 2017, 5, 1566–1573.
27. D. O. Frimannsson, M. Grossi, J. Murtagh, F. Paradisi and D. F. O’Shea, J. Med. Chem., 2010, 53, 7337–7343.
28. A. D’Aléo and F. Fages, Photochem. Photobiol. Sci., 2013, 12, 500–510.
29. M. Mamiya, Y. Suwa, H. Okamoto and M. Yamaji, Photochem. Photobiol. Sci., 2016, 15, 928–936.
30. D. J. Wang, B. P. Xu, X. H. Wei and J. Zheng, J. Fluorine Chem., 2012, 140, 49–53.
31. K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga and K. Saito, Tetrahedron, 2007, 63, 9354–9358.
32. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Macromol. Rapid Commun., 2014, 35, 1315−1319.
33. R. S. Singh, M. Yadav, R. K. Gupta, R. Pandey and D. S. Pandey, Dalton Trans., 2013, 42, 1696–1707.
34. M. J. Kwak and Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 2865–2866.
35. K. Benelhadj, J. Massue and G. Ulrich, New J. Chem., 2016, 40, 5877–5884.
36. Q. Liu, X. Wang, H. Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C, 2015, 3, 2953–2959.
37. T. M. H. Vuong, J. Weimmerskirch-Aubatin, J. F. Lohier, N. Bar, S. Boudin, C. Labbé, F. Gourbilleau, H. Nguyen, T. T. Dang and Didier Villemin, New J. Chem., 2016, 40, 6070–6076.
38. Y. Meesala, V. Kavala, H. C. Chang, T. S. Kuo, C. F. Yao and W. Z. Lee, Dalton Trans., 2015, 44, 1120–1129.
39. W. Li, W. Lin, J. Wang and X. Guan, Org. Lett., 2013, 15, 1768–1771.
40. X. Zhang, H. Yu and Y. Xiao, J. Org. Chem., 2012, 77, 669−673.
41. S. M. Barbon, J. T. Price, P. A. Reinkeluers and J. B. Gilroy, Inorg. Chem., 2014, 53, 10585−10593.
42. H. M. Ko, J. Korean Chem. Soc., 2016, 60, 21−27.
43. A. D′Aléo, A. Felouat, V. Heresanu, A. Ranguis, D. Chaudanson, A. Karapetyan, M. Giorgi and F. Fages, J. Mater. Chem. C, 2014, 2, 5208–5215.
44. E. Cogné-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce, and Ludovic Jullien, Chem. Eur. J., 2004, 10, 1445–1455.
45. L. A. Padilha, S. Webster, O. V. Przhonska, H. Hu, D. Peceli, T. R. Ensley, M. V. Bondar, A. O. Gerasov, Y. P. Kovtun, M. P. Shandura, A. D. Kachkovski, D. J. Hagan and E. W. Van Stryland, J. Phys. Chem. A, 2010, 114, 6493–6501.
46. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova and A. Moore, J. Am. Chem. Soc., 2009, 131, 15257–15261.
47. M. J. Mayoral, P. Ovejero, M. Cano and G. Orellana, Dalton Trans., 2011, 40, 377–383.
48. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno and H. Ikeda, Tetrahedron Lett., 2012, 53, 4138–4141.
49. G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas and C. L. Fraser, J. Am. Chem. Soc., 2007, 129, 8942–8943.
50. Y. Sun, D. Rohde, Y. Liu, L. Wan, Y. Wang, W. Wu, C. Di, G. Yu and D. Zhu, J. Mater. Chem., 2006, 16, 4499–4503.
51. C. A. DeRosa, J. Samonina-Kosicka, Z. Fan, H. C. Hendargo, D. H. Weitzel, G. M. Palmer and C. L. Fraser, Macromolecules, 2015, 48, 2967−2977.
52. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Chem. Eur. J., 2013, 19, 4506–4512.
53. R. Tan, Q. Lin, Y. Wen, S. Xiao, S. Wang, R. Zhang and T. Yi, CrystEngComm, 2015, 17, 66746680.
54. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891−4932.
55. N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
56. J. Bañuelos, F. L. Arbeloa, T. Arbeloa, V. Martinez and I. L. Arbeloa, Applied Science Innovations Pvt. Ltd. 2012.
57. J.-H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134–7142.
58. F. Camerel, L. Bonardi, G. Ulrich, L. Charbonnière, B. Donnio, C. Bourgogne, D. Guillon, P. Retailleau and R. Ziessel, Chem. Mater., 2006, 18, 5009–5021.
59. F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am. Chem. Soc., 2006, 128, 4548–4549.
60. S. M. Barbon, V. N. Staroverov, P. D. Boyle and J. B. Gilroy, Dalton Trans., 2014, 43, 240–250.
61. M. C. Chang, A. Chantzis, D. Jacquemin and E. Otten, Dalton Trans., 2016, 45, 9477–9484.
62. S. M. Barbon, J. T. Price, U. Yogarajah and J. B. Gilroy, RSC Adv., 2015, 5, 56316–56324.
63. M. C. Chang and E. Otten, Chem. Commun., 2014, 50, 7431–7433.
64. S. M. Barbon, V. N. Staroverov and J. B. Gilroy, J. Org. Chem., 2015, 80, 5226−5235.
65. 陳慧珊, 碩士論文, 中央大學化學研究所, 民國 一百零四年.
66. I. Sánchez, M. J. Mayoral, P. Ovejero, J. A. Campo, J. V. Heras, M. Cano and C. Lodeiro, New J. Chem., 2010, 34, 2937–2942.
67. I. Sánchez, J. A. Campo, J. V. Heras, M. Cano and E. Oliveira, Inorg. Chim. Acta., 2012, 318, 124–136.
68. I. Sánchez, C. Núñez, J. A. Campo, M. R. Torres, M. Cano and C. Lodeiro, J. Mater. Chem. C, 2014, 2, 9653–9665.
69. I. Sánchez, A. Fernández-Lodeiro, E. Oliveira, J. A. Campo, M. R. Torres, M. Cano and C. Lodeiro, Dyes Pigm., 2016, 135, 184–200.
70. 林彥君, 碩士論文, 中央大學化學研究所, 民國 一百零二年.
71. 吳宜姿, 碩士論文, 中央大學化學研究所, 民國 一百年.
72. S. K. Pathak, S. Nath, R. K. Gupta, D. S. S. Rao, S. K. Prasadb and A. S. Achalkumar, J. Mater. Chem. C, 2015, 3, 81668182.
73. D. Li, H. Zhang and Y. Wang, Chem. Soc. Rev., 2013, 42, 84168433.
74. S. Xu, R. E. Evans, T. Liu, G. Zhang, J. N. Demas, C. O. Trindle and C. L. Fraser, Inorg. Chem., 2013, 52, 35973610.
75. J. Zhao et al., Phys. Chem. Chem. Phys., 2012, 14, 8803–8817.
指導教授 賴重光(Chung-Kuang Lai) 審核日期 2017-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明