博碩士論文 104223007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.21.97.61
姓名 羅國維(Guo-Wei Luo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含對稱同雜環雙胞胎分子以及不對稱異雜環分子之液晶行為探討
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文主要分成兩個系列,在系列一中,成功合成出以苯環為中心硬核且含 pyrazole及isoxazole 之不對稱異雜環衍生化合物2a-1c。本實驗藉由引入雜環系統、改變分子軟硬端比、改變位相、引入氫氧基來觀察以上因素對化合物液晶行為的影響。改變碳數可以得到2a、1a,呈現SmA或SmC相,氧烷鏈碳數較短時澄清點溫度較高,液晶相範圍也較廣,推測是碳數增加熱擾動增加使得液晶相較難以形成;改變雜環可以得到2a、2b,呈現SmA或SmC相,具有pyrazole的分子2b因為具有NH的氫鍵所以澄清點溫度較高,液晶相範圍也較廣;改變位向可以得到2a、2c、1a、1c,Meta位相的2c、1c皆為結晶相,Para位相的2a-1a則具有液晶相,表示當分子是Para位相時較為直線,容易誘導出層列行液晶相;改變氫氧基位置得到1a、1b、Ia。從結果可得知化合物皆為桿狀液晶,且為層列型液晶SmA或SmC,透過培養1a與Ia之單晶結構,討論1a與Ⅰa的單晶作用力與排列情況,並發現1a因為有較強的分子間氫鍵以及較小的二面角,導致1a分子澄清點較高,液晶相較廣。
在系列二中成功合成出以苯環為中心硬核且含有兩個且含 pyrazole及isoxazole 之對稱異雜環衍生化合物3a-3c’,本實驗藉由引入雜環系統、改變分子軟硬端比、改變位相、引入氫氧基來觀察以上因素對化合物液晶行為的影響。改變軟硬端比可以得到3a、3b,氧烷鏈碳數較短時澄清點溫度較高,液晶相範圍也較廣;改變雜環可以得到3a、IIIa,具有pyrazole的IIIa澄清點溫度較高,液晶相範圍也較廣,推測是具有NH的氫鍵使分子間作用力增加;改變位向可以得到3b-b’、3a-a’, 間位化合物3a’不具液晶相,推測是分子彎曲使其不易形成桿狀液晶,而3b’卻有具有SmA相,表示置入氫氧基後分子形狀可能趨於桿狀,變成較線型的分子;改變氫氧基位置得到3b、IIIa,發現置入氫氧基的3b的OH的氫鍵使分子間作用力增加,使其誘導出溫度範圍更廣的液晶相,澄清點溫度較高。
摘要(英)
Nowadays liquid-crystalline compounds containing five-membered heterocycles are the subject of much investigation. These heterocyclic structures generally incorporated of such electronegative atoms (O or N atom), often resulting in a reduced symmetry for the overall molecules or/and a stronger polar induction. Both pyrazole and isoxazole are in fact aromatic rings and have good planarity which makes molecules easier to stack together, thus inducing better molecular interaction such as π-πinteractions and possibly H-bonds. In this work, a few new series of asymmetrical structures derived from pyrazoles and isoxazoles was synthesized and their mesomorphic properties were also investigated.
In the first series, for new series of unsymmetric isoxazoles and pyrazoles compounds 2a-1c was synthesized and characterized by 1H NMR, 13C NMR, Mass spectrometry and Elementary anaylysis. Single crystals of mesogenic compounds 1a (n = 8) were obtained, and their single crystal and molecular structures were resolved. Intermolecular and intramolecular Hbonds was observed in crystal lattices. All their precursors 2ab were mesogenic, giving SmA or/ and SmC phases, however, other compounds 2c were not mesogenic. Shape effect and Hbonds inherent in the core might be attributed to the formation of the mesophases. On the other hand, bisheterocyclic compounds 1ab were mesogenic, exhibiting SmC or SmA phases, and other compounds 1c were not mesogenic. H-bonding and shape effect were attributed to the formation of the mesophases observed in such bisheterocyclic compounds. Compound Ia withiout hydroxyl group exhibits lower clearing temperature and shorter range of mesogen phase because of the larger dihedral angels 16.15 and weaker intermolecular interactions.
In the second series, a system of twin mesogens containing pyrazoles and isoxazoles was synthesized and characterized by 1H NMR, 13C NMR, Mass spectrometry and Elementary anaylysis. Meta-substituted benzene 3a’ and 3c’ were not mesogen because the bent shape. On other hand, para-
substituted benzene 3a and 3b were mesogen because the linear shape tends to induce the calimatic liquid crystal. Interestingly, higher clearing temperature and better mesogenic performance were observe in 3b than IIIa because of stronger hydrogen bonding in 3b.
關鍵字(中) ★ 液晶
★ 雜環
關鍵字(英) ★ mesogen
★ heterocyclics
論文目次
目錄
中文摘要 I
Abstract III
謝誌 V
第一章 緒論 1
1-1 液晶簡介與應用性 2
1-2 液晶分子的基礎架構 5
1-3 液晶作用力 7
1-4 液晶形成方式分類 9
1-4-1 向列型液晶 11
1-4-2 層列型液晶 12
1-4-3 盤狀液晶 13
1-5 五圓雜環簡介 14
1-6 研究動機 16
1-6-1 系列一研究動機 17
1-6-2 系列二研究動機 18
第二章 實驗部分 21
2-1 實驗藥品 22
2-2 儀器設備 23
2-3 實驗流程 26
2-3-1系列一之實驗流程 26
2-3-2系列二之實驗流程 27
2-4實驗步驟 28
2-4-1系列一之合成 28
2-4-2系列二之合成 40
第三章 結果與討論 49
3-1 結構與代號 50
3-2 系列一化合物性質探討 52
3-2-1 系列一結果與討論 52
3-2-2 系列一化合物2a-c之偏光紋理圖 (POM) 52
3-2-3 化合物2a-c、IIa-b之熱微差掃描分析儀 (DSC) 54
3-2-4 化合物2a-b 之 Powder X-ray 分析 57
3-2-5 系列一化合物1a−c之偏光紋理圖 (POM) 59
3-2-6 化合物1a-c、Ia-b之熱微差掃描分析儀 (DSC) 61
3-2-7 化合物1a-1b、Ia之 Powder X-ray 分析 64
3-2-8 系列一1a、Ia 單晶結構探討與分子模擬排列 67
3-2-9 系列一化合物1a-c、Ia-b之熱重分析結果 76
3-2-10 系列一化合物1a-b、Ia之變溫紅外線光譜儀分析 77
3-2-11 系列一化合物光學性質探討 79
3-3 系列二化合物性質探討 83
3-3-1 系列二結果與討論 83
3-3-2 系列二化合物4a-b、4a-b’之偏光紋理圖 (POM) 84
3-3-3 化合物4a-b、4a’-b’之熱微差掃描分析儀 (DSC) 85
3-3-3 系列二化合物4b’之單晶結構探討與分子模擬排列 87
3-3-4 系列二化合物3a-c、3a’-c’之偏光紋理圖 (POM) 92
3-3-5 化合物3a-IIIa’之熱微差掃描分析儀 (DSC) 96
3-3-6 化合物3a,3b-3b’之 Powder X-ray 分析 100
3-3-7系列二化合物3b之單晶結構探討與分子模擬排列 103
3-3-8 系列二變溫IR圖譜 109
3-3-9 系列二化合物光學性質探討 112
第四章 結論 115
4-1 系列一結論 116
4-2 系列二結論 117
參考文獻 119
附圖 124
附表 173
參考文獻

1. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 1423–1463.
2. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 2897–2920.
3. A. Sysak and B. Obmińska-Mrukowicz, Eur. J. Med. Chem..
DOI: 10.1016/j.ejmech.2017.06.002.
4. A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, V. V. Pakalnis and N. V. Rostovskii, Russ. Chem. Rev., 2015, 84, 335–377.
5. S. Ponra and K. C. Majumdar, RSC Adv., 2016, 6, 37784–37922.
6. J. T. Yu and C. Pan, Chem. Commun., 2016, 52, 2220–2236.
7. A. Kamal, A. B. Shaik, B. B. Rao, I. Khan, G. B. Kumara and N. Jain, Org. Biomol. Chem., 2015, 13, 10162–10178.
8. H. Chuang, L. C. S. Huang, M. Kapoor, Y. J. Liao, C. L. Yang, C. C. Chang, C. Y. Wu, J. R. Hwu, T. J. Huang and M. H. Hsu, Med. Chem. Commun., 2016, 7, 832–836.
9. L. Yan, J. Wu, H. Chen, S. Zhang, Z. Wang, H. Wang and F. Wu, RSC Adv., 2015, 5, 73660–73669.
10. T. S. Kamatchi, P. Kalaivani, F. R. Fronczek, K. Natarajan and R. Prabhakaran, RSC Adv., 2016, 6, 46531–46547.
11. H. Andleeb, Y. Tehseen, S. J. A. Shah, I. Khan, J. Iqbal and S. Hameed, RSC Adv., 2016, 6, 77688–77700.
12. B. A. Chalyk, I. Y. Kandaurova, K. V. Hrebeniuk,
O. V. Manoilenko, I. B. Kulik, R. T. Iminov, V. Kubyshkin, A. V. Tverdokhlebov, O. K. Ablialimov and P. K. Mykhailiuk, RSC Adv., 2016, 6, 25713–2572.
13. J. Fernández, J. Chicharro, J. M. Bueno and M. Lorenzo, Chem. Commun., 2016, 52, 10190–10192.
14. I. Triandafillidi and C. G. Kokotos, Org. Lett., 2017, 19, 106–109.
15. H. Yu, P. Ge, J. Chen, H. Xie and Yi Luo,
Environ. Sci.: Processes Impacts, 2017, 19, 379–387.
16. K. T. Lin, G. H. Lee and C. K. Lai, Tetrahedron, 2015, 71, 4352–4361.
17. H. H. G. Tsai, L. C. Chou, S. C. Lin, H. S. Sheu and C. K. Lai, Tetrahedron Lett., 2009, 50, 1906–1910.
18. K. T. Lin and C. K. Lai, Tetrahedron, 2016, 72, 7579–7588.
19. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2014, 70, 6457–6466.
20. S. Y. Chou, C. J. Chen, S. L. Tsai, H. S. Sheu,G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 1130–1139.
21. M. C. Chen, S. C. Lee, C. C. Ho, T. S. Hu, G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 9460–9467.
22. T. Ikeda, T. Iijima, R. Sekiya, O. Takahashi and T. Haino, J. Org. Chem., 2016, 81, 6832–6837.
23. R. J. Fox, C. E. Markwalter, M. Lawler, K. Zhu, J. Albrecht, J. Payack and M. D. Eastgate. Org. Process Res. Dev., 2017, 21, 754–762.
24. D. Nagaraju, E. Rajanarendar, P. P. Kumar and M. N. Reddy, New J. Chem. DOI: 10.1039/c7nj01165b.
25. Q. Jin, J. Li, L. Zhang, S. Fanga and M. Liu, CrystEngComm, 2015, 17, 8058–8063.
26. C. T. Liao, Y. J. Wang, C. S. Huang, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2007, 63, 12437–12445.
27. T. S. Hu, K. T. Lin, C. C. Mu, H. M. Kuo, M. C. Chen and C. K. Lai, Tetrahedron, 2014, 70, 9204–9213.
28. A. C. Götzinger, F. A. Theßeling, C. Hoppe and T. J. J. Müller, J. Org. Chem., 2016, 81, 10328–10338.
29. C. Cuerva, J. A. Campo, M. Cano, J. Sanz, I. Sobrados, V. Diez-Gómez, A. Rivera-Calzada and R. Schmidt, Inorg. Chem., 2016, 55, 6995–7002.
30. B. W. Cong, Z. H. Su, Z. F. Zhao, B. Y. Yu, W. Q. Zhao and X. J. Ma, Dalton Trans. DOI: 10.1039/c7dt01240c.
31. J. Li, G. Dong, L. Duan, D. Ma, T. Hu, Y. Zhang, L. Wang and Y. Qiu, RSC Adv., 2014, 4, 51294–51297.
32. C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y. Chui and N. Zhu, Chem. Sci., 2011, 2, 216–220.
33. J. L. Liao, Y. Chi, J. Y. Wang, Z. N. Chen, Z. H. Tsai, W. Y. Hung, M. R. Tseng, and G. H. Lee, Inorg. Chem., 2016, 55, 6394–6404.
34. J. H. Yum, T. Moehl, J. Yoon, A. K. Chandiran, F. Kessler, P. Gratia, and M. Grätzel, J. Phys. Chem. C, 2014, 118, 16799–16805.
35. H. Kusama, H. Sugihara, and K. Sayama, J. Phys. Chem. C, 2009, 113, 48.
36. K. L. Wu, A. J. Huckaba, J. N. Clifford, Y. W. Yang, A. Yella, E. Palomares, M. Grätzel, Y. Chi and M. K. Nazeeruddin, Inorg. Chem., 2016, 55, 7388–7395.
37. F. Strinitz, J. Tucher, J. A. Januszewski, A. R. Waterloo, P. Stegner, S. Förtsch, E. Hübner, R. R. Tykwinski and N. Burzlaff, Organometallics, 2014, 33, 5129–5144.
38. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torresb and M. Cano, Dalton Trans., 2014, 43, 8849–8860.
39. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torres, E. Oliveira, S. M. Santos, C. L. and M. Cano, J. Mater. Chem. C, 2014, 2, 9167–9181.
40. W. C. Shen, Y. J. Wang, K. L. Cheng, G. H. Lee and C. K. Lai, Tetrahedron, 2006, 62, 8035–8044.
41. S. Kuwata and T. Ikariya, Chem. Commun., 2014, 50, 14290–14300.
42. T. Toda, K. Saitoh, A. Yoshinari, T. Ikariya and S. Kuwata, Organometallics, 2017, 36, 1188–1195.
43. W. Ye, X. Xiao, L. Wang, S. Hou and C. Hu, Organometallics.
DOI: 10.1021/acs.organomet.7b00154.
44. S. Kalaivani and T. Narasimhaswamy, J. Phys. Chem. B, 2011, 115, 11554–11565.
45. M. Roohnikan, V. Toader, A. Rey and L. Reven, Langmuir, 2016, 32, 8442–8450.
46. Y. Cai, M. Zheng, Y. Zhu, X. F. Chen, and C. Y. Li, ACS Macro Lett., 2017, 6, 479–484.
47. J. Jian, F. Hong, Z. Xia, D. Zhu, H. Wu, J. Liu , X. Bu, M. Cui,
Z. Zenga and H Wang, J. Mol. Liq., 2016, 224, 909–913.
48. Z. Y. Lei, H. M. Kuo and C. K. Lai, Tetrahedron, 2017, 73 1650–1660.
49. Y. L. Li, G. H. Lee and C. K. Lai, Tetrahedron, 2015, 71 5296–5307.
50. R. Cristiano, D. M. P. De Oliveira Santos and H. Gallardo, Liq. Cryst., 2005, 32, 7–14.
51. H. M. Kuo, S. Y. Li, H. S. Sheu and C. K. Lai, Tetrahedron, 2012, 68, 7331–7337.
52. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2013, 69, 9045–9055.
53. H. M. Kuo, Y. L. Chen, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6843–6853.
54. C. K. Lai, Y. C. Ke, J. C. Su, C. Shen and W. R. Li, Liq. Cryst., 2002, 29, 915–920.
55. 胡倩瑜, 碩士論文,中央大學化學研究所,民國一百零四年.
56. H. Y. Lin, H. M. Kuo, S. G. Wen, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2012, 68, 6231–6239.
57. 林慧芸, 碩士論文,中央大學化學研究所,民國九十六年.
58. S. Maity, S. Pal, S. Sardar, N. Sepay, H. Parvej, J. Chakraborty, U. C. Halder, RSC Adv. 2016, 6, 112175–112183.
59. M. Denißen,J. Nordmann, J. Dziambor, B. Mayer, W. Frankb
and Thomas J. J. Muller.
60. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288131&Units=SI&Mask=400#UV-Vis-Spec
61. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288142&Units=SI&Mask=400#UV-Vis-Spec
指導教授 賴重光(Chung-Kuang Lai) 審核日期 2017-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明