博碩士論文 104324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.226.163.23
姓名 吳柏融(Bo-Rong Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 蒸氣相成長金屬有機框架材料合成
(Vapor Phase Synthesis of Metal-Organic Frameworks (MOFs))
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構之二氧化碳吸附性質探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用傳統電器(Conventional Electric)及微波輔助(Microwave-assisted)方式合成金屬有機框架材料(MOFs),並嘗試在前驅溶液的蒸氣相中合成MIL-53 (Al)晶體於氧化鋁基材(α-Al2O3)的表面上形成膜(Membrane)或直接將前驅物加熱為蒸氣狀態,進而反應並沈積薄膜在基板,有別於以往傳統製備無機氣體滲透膜的製程是將基材放置於前驅溶液的液相中成長膜及化學氣相沈積法,這是相對成本較低且在蒸氣相合成金屬有機框架薄膜的方法。
在本研究中,我們設計了四種可以在蒸氣相成長膜的方法,並且透過參數的改變及製程上的設計進而提高膜的覆蓋率及均勻性。然而我們也發現,在液相及蒸氣相中以傳統烘箱及微波合成金屬有機框架膜皆有不同的表面形貌產生,大致上可分為塊狀及棒狀。
X-射線繞射分析儀(X-ray diffraction, XRD)可用來驗證成長於基材上的的材料為何,並判斷MIL-53 (Al)是否成功成長於氧化鋁基材上。掃描式電子顯微鏡 (scanning electron microscopy, SEM)用來分析MIL-53 (Al)膜的表面形貌。氮氣吸附孔隙儀 (BET surface area measurement)分別對傳統電器合成的MIL-53 (Al)及微波輔助合成的MIL-53 (Al)量測比表面積,驗證不同合成方法對於材料的比表面積的影響。
摘要(英)
In this study, conventional electric and microwave-assisted heating were used for metal-organic framework synthesis, and we attempted to grow MIL-53 (Al) membrane on α-Al2O3 via vapor processing. Different from conventional method which places α-Al2O3 in the liquid precursor solution for preparing inorganic gas separation membrane, these methods are inexpensive for membrane fabrication in the vapor phase condition.
In this research, we developed four methods for membrane synthesis in the vapor phase. The membrane coverage and uniformity were improved by adjusting the experimental process and parameters. In addition, membrane synthesis with different conditions resulted in different crystal morphologies, such as bulk-like and rod-like crystals. Namely, we could control the membrane morphology by synthetic methods and phases.
Material growing on α-Al2O3 was identified by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used for morphology analysis. Different surface area of MIL-53 (Al) synthesized by conventional electric and microwave-assisted heating was confirmed by BET surface area measurement.
關鍵字(中) ★ 蒸氣相
★ 金屬有機框架
★ MIL-53 (Al)
★ 溶熱法
★ 傳統電器加熱
★ 微波輔助加熱
★ 氧化鋁基材
關鍵字(英) ★ Vapor phase
★ Metal-organic framework
★ MIL-53 (Al)
★ Solvothermal
★ Conventional electric
★ Microwave-assisted
★ Alumina support
論文目次

摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables xii
Chapter 1 Background 1
1.1 Introduction 1
1.2 Review of Relevant Literature 6
1.2.1 Materials Institute Lavoisier-53, MIL-53 6
1.2.2 Hydrothermal, Solvothermal and Microwave-Assisted Heating 9
1.2.3 MOF Membrane 13
1.2.4 Vapor Processing 19
1.3 Motivation 23
Chapter 2 Experimental Methods 24
2.1 Material 24
2.1.1 Chemical Compounds 24
2.1.2 Porous Inorganic Support 24
2.2 Experimental Procedure 25
2.2.1 MIL-53 (Al) Synthesis via Conventional Electric and Microwave-Assisted Heating 25
2.2.2 Preparation of MIL-53 (Al) Membrane 27
2.3 Equipment Used 43
2.4 Material Characterizations 44
Chapter 3 Results and Discussion 46
3.1 MIL-53 (Al) Synthesis via Conventional Electric and Microwave-assisted Heating 46
3.1.1 Material Identification and Yield 46
3.1.2 Crystal Morphology 49
3.1.3 Nitrogen Adsorption Isotherms, Surface Area and Pore Size Distribution 50
3.2 Preparation of MIL-53 (Al) membrane 52
3.2.1 Secondary Growth Method 53
3.2.2 Solvent Evaporation (oven) Method 60
3.2.3 Solvent Evaporation (hot plate) Method 66
3.2.4 Vapor-Solid Crystallization Method 75
Chapter 4 Conclusions 79
Chapter 5 Future Work 80
References 81
參考文獻
1. Eddaoudi, M., D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O′Keeffe, and O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001. 34(4): p. 319-330.
2. Kim, J., B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O′Keeffe, and O.M. Yaghi, Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units:  New Examples and Simplifying Principles for Complex Structures. Journal of the American Chemical Society, 2001. 123(34): p. 8239-8247.
3. Furukawa, H., N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, and O.M. Yaghi, Ultrahigh Porosity in Metal-Organic Frameworks. Science, 2010. 329(5990): p. 424.
4. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
5. Nan, J., X. Dong, W. Wang, W. Jin, and N. Xu, Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous α-Alumina Support. Langmuir, 2011. 27(8): p. 4309-4312.
6. Kaye, S.S., A. Dailly, O.M. Yaghi, and J.R. Long, Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007. 129(46): p. 14176-14177.
7. Tai, S., W. Zhang, J. Zhang, G. Luo, Y. Jia, M. Deng, and Y. Ling, Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Materials, 2016. 220: p. 148-154.
8. Usman, M., S. Mendiratta, S. Batjargal, G. Haider, M. Hayashi, N. Rao Gade, J.-W. Chen, Y.-F. Chen, and K.-L. Lu, Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015. 7(41): p. 22767-22774.
9. Haque, E., N.A. Khan, J.H. Park, and S.H. Jhung, Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chemistry, 2010. 16(3): p. 1046-52.
10. Pan, Y., D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su, and Z. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm, 2011. 13(23): p. 6937-6940.
11. McKinstry, C., R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, and J. Sefcik, Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chemical Engineering Journal, 2016. 285: p. 718-725.
12. Zhang, F., X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, and G. Zhu, Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability. Advanced Functional Materials, 2012. 22(17): p. 3583-3590.
13. Yeo, Z.Y., S.-P. Chai, P.W. Zhu, and A.R. Mohamed, An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 2014. 4(97): p. 54322-54334.
14. Qiu, S., M. Xue, and G. Zhu, Metal-organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 2014. 43(16): p. 6116-6140.
15. Shah, M., M.C. McCarthy, S. Sachdeva, A.K. Lee, and H.-K. Jeong, Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Industrial & Engineering Chemistry Research, 2012. 51(5): p. 2179-2199.
16. Li, L., J. Yao, R. Chen, L. He, K. Wang, and H. Wang, Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous and Mesoporous Materials, 2013. 168: p. 15-18.
17. Zhang, W., Experimental Investigation on Gas Separation Using Porous Membranes, in Technischen Universität Berlin. 2011.
18. Zhu, X., H. Wang, and Y.S. Lin, Effect of the Membrane Quality on Gas Permeation and Chemical Vapor Deposition Modification of MFI-Type Zeolite Membranes. Industrial & Engineering Chemistry Research, 2010. 49(20): p. 10026-10033.
19. Lu, G.Q., J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, and T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 2007. 314(2): p. 589-603.
20. Zhang, W., M. Gaggl, G.J.G. Gluth, and F. Behrendt, Gas separation using porous cement membrane. Journal of Environmental Sciences, 2014. 26(1): p. 140-146.
21. Tanh Jeazet, H.B., C. Staudt, and C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 2012. 41(46): p. 14003-14027.
22. Chung, T.-S., L.Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007. 32(4): p. 483-507.
23. Zhu, Y., Q. Liu, and A. Huang, Microwave synthesis of tubular zeolitic imidazolate framework ZIF-8 membranes for CO2/CH4 separation. Separation Science and Technology, 2016. 51(5): p. 883-891.
24. 賴君義, 專題報導-薄膜科技. 臺北市 : 行政院國家科學委員會, 2008. 科學發展 429期: p. 32-37.
25. Yoo, Y. and H.-K. Jeong, Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chemical Communications, 2008(21): p. 2441-2443.
26. Gascon, J., S. Aguado, and F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008. 113(1–3): p. 132-138.
27. Ameloot, R., L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, and D.E. De Vos, Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials, 2009. 21(13): p. 2580-2582.
28. Arnold, M., P. Kortunov, D.J. Jones, Y. Nedellec, J. Kärger, and J. Caro, Oriented Crystallisation on Supports and Anisotropic Mass Transport of the Metal-Organic Framework Manganese Formate. European Journal of Inorganic Chemistry, 2007. 2007(1): p. 60-64.
29. Lee, D.-J., Q. Li, H. Kim, and K. Lee, Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012. 163: p. 169-177.
30. Ameloot, R., E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, and D.E. De Vos, Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010. 22(24): p. 2685-2688.
31. McCarthy, M.C., V. Varela-Guerrero, G.V. Barnett, and H.-K. Jeong, Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 2010. 26(18): p. 14636-14641.
32. Liu, Y., J.-H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, and C.M. Brown, Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. Journal of the American Chemical Society, 2008. 130(35): p. 11813-11818.
33. Beurroies, I., M. Boulhout, P.L. Llewellyn, B. Kuchta, G. Ferey, C. Serre, and R. Denoyel, Using pressure to provoke the structural transition of metal-organic frameworks. Angew Chem Int Ed Engl, 2010. 49(41): p. 7526-9.
34. Mulder, F.M., B. Assfour, J. Huot, T.J. Dingemans, M. Wagemaker, and A.J. Ramirez-Cuesta, Hydrogen in the Metal−Organic Framework Cr MIL-53. The Journal of Physical Chemistry C, 2010. 114(23): p. 10648-10655.
35. Serre, C., S. Bourrelly, A. Vimont, N.A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, and G. Férey, An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption. Advanced Materials, 2007. 19(17): p. 2246-2251.
36. Serre, C., F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, and G. Férey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 2002. 124(45): p. 13519-13526.
37. Loiseau, T., C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry, 2004. 10(6): p. 1373-82.
38. Qian, X., B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, and Y. Huang, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, 2013. 38(36): p. 16710-16715.
39. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司, 2004: p. p.4.31-4.36.
40. Cohen, S.M., Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 970-1000.
41. Qiu, S. and G. Zhu, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009. 253(23–24): p. 2891-2911.
42. Klinowski, J., F.A. Almeida Paz, P. Silva, and J. Rocha, Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions, 2011. 40(2): p. 321-330.
43. Hu, Y., X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, and Y.M. Lee, Metal-organic framework membranes fabricated via reactive seeding. Chem Commun (Camb), 2011. 47(2): p. 737-9.
44. Kwon, H.T. and H.K. Jeong, Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem Commun (Camb), 2013. 49(37): p. 3854-6.
45. Lai, L.S., Y.F. Yeong, T.L. Chew, K.K. Lau, and M.S. Azmi, CO2 and CH4 gas permeation study via zeolitic imidazolate framework (ZIF)-8 membrane. Journal of Natural Gas Science and Engineering, 2016. 34: p. 509-519.
46. Stassen, I., D. De Vos, and R. Ameloot, Vapor-Phase Deposition and Modification of Metal–Organic Frameworks: State-of-the-Art and Future Directions. Chemistry – A European Journal, 2016. 22(41): p. 14452-14460.
47. Stassen, I., M. Styles, G. Grenci, H.V. Gorp, W. Vanderlinden, S.D. Feyter, P. Falcaro, D.D. Vos, P. Vereecken, and R. Ameloot, Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater, 2016. 15(3): p. 304-310.
48. Shi, Q., Z. Chen, Z. Song, J. Li, and J. Dong, Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie International Edition, 2011. 50(3): p. 672-675.
49. Ahmed, I., J. Jeon, N.A. Khan, and S.H. Jhung, Synthesis of a Metal–Organic Framework, Iron-Benezenetricarboxylate, from Dry Gels in the Absence of Acid and Salt. Crystal Growth & Design, 2012. 12(12): p. 5878-5881.
50. Kim, J., Y.-R. Lee, and W.-S. Ahn, Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: high surface area and high yield synthesis with minimum purification. Chemical Communications, 2013. 49(69): p. 7647-7649.
51. Das, A.K., R.S. Vemuri, I. Kutnyakov, B.P. McGrail, and R.K. Motkuri, An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. Scientific Reports, 2016. 6: p. 28050.
指導教授 張博凱(Bor Kae Chang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明