博碩士論文 104223015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.222.205.211
姓名 游可綱(Ke-Kang You)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型熱脫附濃縮儀設計應用於揮發性有機污染物分析
(Newly designed thermal desorption pre-concentrator for analysis of volatile organic compounds (VOCs))
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 揮發性有機化合物(Volatile organic compounds, VOCs)經過光化學反應會生成二次污染物如臭氧(O3)與二次有機氣膠(secondary organic aerosols; SOA)。研究顯示,臭氧與SOA對人體呼吸系統會造成健康危害,因此監測大氣之VOC成分與濃度顯得格外重要。周界環境中之VOCs濃度約在sub-ppb至ppt(v/v)之間,往往低於氣相層析儀(Gas chromatography, GC)偵測器如火焰離子(flame ionization detection; FID)或質譜儀(mass spectrometry; MS)之偵測極限,因此空氣樣品在進入GC前需要經過濃縮步驟,核心原理為吸附劑在低溫狀態下以物理及化學吸附的方式進行捕捉,之後再利用瞬間熱脫附至GC,稱之為熱脫附法(thermal desorption; TD)。
本論文成功改良前一版本之電磁閥設計上之缺陷,並開發出一鋁塊預埋式氣路歧管(pre-drilled aluminum block manifold)設計,氣體通道完全隱藏於一預先鑽好氣路通道之鋁塊當中,避免傳統上旋轉閥(switching valve)與複雜的不鏽鋼管材與接頭的使用,除了體積大幅縮小外,由於通道隱藏於鋁件當中,因此整個系統可以進行保溫,也不易產生洩漏點;而電磁閥則直接固定在通道口以控制載氣流動路徑,因此組裝更為簡易,可靠度亦高。以此新型TD分析56種VOC標準物質時,過半數物種之偵測極限(method detection limit, MDL)小於0.1 ppb,均介於0.1 ~ 1.51 ppb之間,而平均相對標準偏差(relative standard deviation, RSD)可小於1%,顯示系統具有極佳的再現性;大部分物種之線性(R2)皆大於0.99 (乙烷、乙烯及乙炔除外,約為0.96),顯示此新型一體式氣路歧管之TD設計有極大的應用與發展潛力。
摘要(英)
Volatile organic compounds (VOCs) are precursors of ozone and secondary organic aerosols (SOA) in the atmosphere, and the latter two are called secondary pollutants. Either VOCs or the photo-chemically produced secondary pollutants cause respiratory health effects. As a result, the knowledge of speciation and abundance of atmospheric VOCs is pivotal to forge control policies to improve air quality. However, the abundance of atmospheric VOCs is usually low in the ppt (v/v) to ppb (v/v) range, which is below the detection limits of most types of gas chromatographic (GC) detection methods, such as flame ionization detection (FID) or mass spectrometry. Therefore, a pre-concentration stage employing a physico-chemical absorption process called thermal desorption (TD) prior to GC injection is the key to high-quality GC separation and low detection limits.

In this study, a previously in-house developed solenoid-valve based apparatus was further modified. In addition to the omission of a switching valve commonly used for gas sample injection, the new apparatus employed an aluminum block with pre-drilled tunnels or passage to replace stainless steel (s.s.) tubing and connectors . Solenoid valves were bolted to the block to control the gas flow paths. The new design, called pre-drilled aluminum block manifold, greatly facilitates the construction of a TD device and, at the same time, reduces the likelihood of gas leakage, and thus improves the overall robustness and reliability. Of the 56 compounds in the standard mixture from C2-C12, more than half of the target compounds showed D.L. lower than 0.1 ppb (0.1-1.5 ppb) and precisions better than 1.0% (RSD). The linearity was greater than 0.99 with the exception of ethane, ethylene, and acetylene (R2 = 0.96).
關鍵字(中) ★ 揮發性有機化合物
★ 新型熱脫附濃縮儀
關鍵字(英)
論文目次
目錄

摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xvii
第一章 前言 1
1-1 研究起源 1
1-2 VOCs自動即時量測技術 4
1-3 方法回顧 9
1-4 研究目標 13
第二章 實驗原理及分析方法 15
2-1 前濃縮及熱脫附系統原理 15
2-1-1 冷凍物理吸附法 15
2-1-2 冷凍吸附劑吸附法 18
2-1-3 熱脫附方法 21
2-2 層析峰品質 21
2-2-1 額外管柱效應 22
2-2-2 拖尾程度量化 24
2-3 層析管柱 27
2-4 火焰離子偵測器(Flame Ionization Detector, FID) 29
2-5 中心切接技術(Heart cut) 31
第三章 實驗系統介紹 37
3-1 電磁閥式濃縮儀系統 37
3-1-1 舊版電磁閥式系統 37
3-1-2 改良之電磁閥式系統 42
3-2 一體式前濃縮儀 44
3-2-1 系統設計 46
3-2-2 鋁塊預埋式氣路歧管(Pre-drilled aluminum block manifold) 48
3-3 LabVIEW自動化軟體控制 57
第四章 實驗結果與討論 63
4-1 改良之電磁閥式濃縮儀系統圖譜呈現 63
4-2 一體式濃縮儀圖譜呈現 64
4-2-1 一體式歧管系統溫度控制 66
4-2-2 分流選擇及對稱性表現 68
4-2-3 中心切割時間點選擇 73
4-2-4 建立檢量線 75
4-2-5 再現性及方法偵測極限測試(Method detection limit, MDL) 78
4-3 不同濃縮儀綜合比較 81
第五章 結論 87
參考文獻 89
附錄 95
參考文獻

1. Chang, C.-C.; Wang, J.-L.; Candice Lung, S.-C.; Chang, C.-Y.; Lee, P.-J.; Chew, C.; Liao, W.-C.; Chen, W.-N.; Ou-Yang, C.-F., Seasonal characteristics of biogenic and anthropogenic isoprene in tropical–subtropical urban environments. Atmospheric Environment 2014, 99, 298-308.
2. Chang, C.-C.; Wang, J.-L.; Candice Lung, S.-C.; Liu, S.-C.; Shiu, C.-J., Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmospheric Environment 2009, 43 (10), 1771-1778.
3. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292 (5517), 719-723.
4. Kampa, M.; Castanas, E., Human health effects of air pollution. Environ Pollut 2008, 151 (2), 362-7.
5. Ware, J. H.; Spengler, J. D.; Neas, L. M.; Samet, J. M.; Wagner, G. R.; Coultas, D.; Ozkaynak, H.; Schwab, M., Respiratory and Irritant Health Effects of Ambient Volatile Organic Compounds: The Kanawha County Health Study. Am J Epidemiol 1993, 137 (12), 1287-1301.
6. Na, K., Determination of VOC source signature of vehicle exhaust in a traffic tunnel. Journal of Environmental Management 2006, 81 (4), 392-398.
7. Na, K.; Kim, Y. P.; Moon, I.; Moon, K.-C., Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere 2004, 55 (4), 585-594.
8. Liu, Y.; Shao, M.; Lua, S.; Changb, C.-C.; Wangc, J.-L.; Fua, L., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmospheric Environment 2008, 42 (25), 6261-6274.
9. Chen, S.-P.; Liu, T.-H.; Chen, T.-F.; Yang, C.-F. O.; Wang, J.-L.; Chang, J. S., Diagnostic Modeling of PAMS VOC Observation. Environmental Science & Technology 2010, 44 (12), 4635-4644.
10. 林彥宏, VOC前濃縮與預警系統之建構. 國立中央大學化學研究所碩士論文 2000.
11. Helmig, D., Air analysis by gas chromatography. Journal of Chromatography A 1999, 843 (1-2), 129-146.
12. Farmer, D. K.; Jimenez, J. L., Real-time Atmospheric Chemistry Field Instrumentation. Analytical chemistry 2010, 82 (19), 7879-7884.
13. Król, S.; Zabiegała, B.; Namieśnik, J., Monitoring VOCs in atmospheric air I. On-line gas analyzers. TrAC Trends in Analytical Chemistry 2010, 29 (9), 1092-1100.
14. Shao, L.; Griffiths, P. R.; Leytem, A. B., Advances in Data Processing for Open-Path Fourier Transform Infrared Spectrometry of Greenhouse Gases. Analytical chemistry 2010, 82 (19), 8027-8033.
15. 空氣中氣相化合物檢測方法-抽氣式霍氏紅外光光譜分析法NIEA A001.10C. 行政院環保署環境檢驗所 2003.
16. 空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法NIEA A002.10C. 行政院環保署環境檢驗所 2005.
17. Hong, D. W.; Heo, G. S.; Han, J. S.; Cho, S. Y., Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area. Atmospheric Environment 2004, 38 (33), 5567-5576.
18. Dewulf, J.; Langenhove, H. V., Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. Journal of Chromatography A 1999, 843 (1-2), 163-177.
19. Wanke, T.; Vehlow, J., IMR-MS on-line measurements in the exhaust gas of a municipal solid waste incineration pilot plant (Tamara). Chemosphere 1997, 34 (2), 345-355.
20. Lindinger, W.; Hansel, A.; Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes 1998, 173 (3), 191-241.
21. JM, S.; VS, L.; PF, W.; MJ, M.; ST, C., Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Microbiological Methods 2005, 63 (2), 127-134.
22. 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法NIEA A505.12B. 行政院環保署環境檢驗所 2013.
23. 周順盈, 非甲烷碳氫化合物及鹵碳化物自動化分析系統之建立及改進. 國立中央大學化學研究所碩士論文 1999.
24. 陳思偉, 揮發性有機物質自動化分析系統之軟硬體規劃與整合. 國立中央大學化學研究所碩士論文 1999.
25. 陳永紳, 氣流導引式熱脫附法應用於有機污染物分析. 國立中央大學化學研究所碩士論文 2015.
26. 戴順育, 氣相層析技術應用於揮發性有機化合物分析方法中熱脫附行為之診斷. 國立中央大學化學研究所碩士論文 2014.
27. Schmidbauer, N.; Oehme, M., Improvement of a cryogenic preconcentration unit for C2 - C6 hydrocarbons in ambient air at ppt levels. Journal of separation science 1986, 9 (9), 502-505.
28. McClenny, W. A.; Pleil, J. D.; Holdren, M. W.; Smith, R. N., Automated cryogenic preconcentration and gas chromatographic determination of volatile organic compounds in air. Analytical chemistry 1984, 56 (14), 2947-2951.
29. Sanchez, J. M.; Sacks, R. D., On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume air samples. Analytical chemistry 2003, 75 (4), 978-985.
30. Goldstein, A. H.; Daube, B. C.; Munger, J. W.; Wofsy, S. C., Automated in-situ monitoring of atmospheric non-methane hydrocarbon concentrations and gradients. Journal of Atmospheric Chemistry 1995, 21 (1), 43-59.
31. Greenberg, J. P.; Helmig, D.; Zimmerman, P. R., Seasonal measurements of nonmethane hydrocarbons and carbon monoxide at the Mauna Loa Observatory during the Mauna Loa Observatory Photochemistry Experiment 2. Journal of geophysical research atmospheres 1996, 101 (D9), 14581-14598.
32. Klemp, D.; Kley, D.; Kramp, F.; Buers, H. J.; Pilwat, G.; Flocke, F.; Pätz, H. W.; Volz-Thomas, A., Long-Term Measurements of Light Hydrocarbons (C2-C5)at Schauinsland (Black Forest). Journal of Atmospheric Chemistry 1997, 28 (1), 135-171.
33. Cardenas, L.; Austin, J.; Burgess, R.; Clemitshaw, K.; Dorling, S.; Penkett, S.; Harrison, R., Correlations between CO, NO y, O 3 and non-methane hydrocarbons and their relationships with meteorology during winter 1993 on the North Norfolk Coast, UK. Atmospheric Environment 1998, 32 (19), 3339-3351.
34. Habram, M.; Slemr, J.; Welsch, T., Development of a Dual Capillary Column GC Method for the Trace Determination of C2–C9 Hydrocarbons in Ambient Air. Journal of separation science 1998, 21 (4), 209-214.
35. Wang, J.-L.; Chang, C.-J.; Chang, W.-D.; Chew, C.; Chen, S.-W., Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere. Journal of Chromatography A 1999, 844, 259-269.
36. Wang, J.-L.; Chen, S.-W.; Chew, C., Automated gas chromatography with cryogenic / sorbent trap for the measurement of volatile organic compounds in the atmosphere. Journal of Chromatography A 1999, 863, 183-193.
37. Pollmann, J.; Helmig, D.; Hueber, J.; Tanner, D.; Tans, P. P., Evaluation of solid adsorbent materials for cryogen-free trapping-gas chromatographic analysis of atmospheric C2-C6 non-methane hydrocarbons. Journal of Chromatography A 2006, 1134 (1-2), 1-15.
38. Ribes, A.; Carrera, G.; Gallego, E.; Roca, X.; Berenguer, M. J.; Guardino, X., Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. Journal of Chromatography A 2007, 1140 (1), 44-55.
39. Wang, J.-L.; Din, G.-Z.; Chih-Chung, C., Validation of a laboratory-constructed automated gas chromatograph for the measurement of ozone precursors through comparison with a commercial analogy. Journal of Chromatography A 2004, 1027, 11-18.
40. Wang, J.-L.; Wu, C.-H., Construction and validation of a cryogen free gas chromatography-electron-capture detection system for the measurement of ambient halocarbons. Analytica Chimica Acta 2002, 461, 85-95.
41. D, T.; D, H.; J, H.; P, G., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. Journal of Chromatography A 2006, 1111, 76-88.
42. Wang, J.-L.; Chen, W.-L.; Lin, Y.-H.; Tsai, C.-H., Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds. Journal of Chromatography A 2000, 896, 31-39.
43. Su, Y.-C.; Kao, H.-M.; Wang, J.-L., Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. Journal of Chromatography A 2010, 1217, 5643-5651.
44. Stearns, S. D.; Cai, H.; Koehn, J. A.; Brisbin, M.; Cowles, C.; Bishop, C.; Puente, S.; Ashworth, D., A direct resistively heated gas chromatography column with heating and sensing on the same nickel element. Journal of Chromatography A 2010, 1217, 4629-4638.
45. Su, Y.-C.; Liu, W.-T.; Liao, W.-C.; Chiang, S.-W.; Wang, J.-L., Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Journal of Chromatography A 2011, 1218, 5733-5742.
46. 蘇源昌, 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用. 國立中央大學化學研究所博士論文 2011.
47. Dolan, J. W., Extracolumn Effects. LCGC North America 2005, 23 (2), 130-135.
48. 王美珠, 針對工業排放之污染性有機氣態物質開發連續監測技術. 國立中央大學化學研究所碩士論文 2016.
49. 王介亨, 以Heart cut技術配合酖偵測器發展氣相層析剪裁(tailoring)技術. 國立中央大學化學研究所碩士論文 2004.
50. Deans, D. R., A new technique for heart cutting in gas chromatography Chromatographia 1968, 1 (1), 18-22.
51. http://www.maingchau.com.tw/produce.php?sn=2
指導教授 王家麟 審核日期 2017-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明