博碩士論文 104324604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.129.39.85
姓名 菲斯雅(FRESHSYA ZATA LINI)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Effects of Templating Molecules of Sodium Benzoate, 1:1 Co-crystal of Benzoic Acid - Sodium Benzoate, and 2:1 Co-crystal of Benzoic Acid - Sodium Benzoate on the Crystallization Kinetics of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 製藥工業中, 製藥工業中, 65% 以上的新候選藥 物其 水溶性 極低,可 通過 將一 活性藥物成分( 活性藥物成分( API) 與一共形成體結合共晶( 形成體結合共晶( 形成體結合共晶( 形成體結合共晶( Co-crystal),藉此提升 ),藉此提升 ),藉此提升 高端產物 高端產物 的純化 效果以及藥物的 效果以及藥物的 效果以及藥物的 生 物相容性 來克服 此問題。 問題。 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 在我的研究當中,苯甲酸作為活性藥物成分與鈉共 形成體通過反應結晶的方式在積比 4:1的乙醇 -水溶液中產生共晶:將含有 溶液中產生共晶:將含有 溶液中產生共晶:將含有 17.22克 (0.141 莫耳)的苯甲酸溶液A在 50毫升的乙醇水溶液加入 含有 1.89克(0.047莫耳 ) 的氫氧化鈉 溶液B 在 6毫升的乙醇水溶液 。接著, 接著, 將溶液A與B混合後所形成的一 澄清飽和溶液 從室溫冷卻至 16度,直到晶體 開始形成 ,即溶液變得渾濁,表明該 系統 的成核引發 時間 (τ)結束 ,進而 可用於 推算出 一些 重要結晶成 核與長的動力 學和熱學參數 ,例如:界面能 (γ)、 Gibbs能障(ΔGcr)、 成核速率 (J)、 成核的臨界尺寸 (rc) 及相對生長速率 (RG),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( ),針對此系統不同初始過飽和比( S0): 1.66、1.54、1.48與 1.43來 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 計算上述所提之參數,並進行分析。為更一步探討子模板對於共晶的影響苯甲酸 納、苯甲酸其 2:1以及 1:1的共結晶分別以 1.5的重量百分比添加至上述所提之溶液 A,重複量測其結晶的 ,重複量測其結晶的 動力學和熱參數 。此 系統的 成核引發 時間為 3到 40分鐘, 分鐘, 隨 著較高的初始過飽和比,可得到 著較高的初始過飽和比,可得到 著較高的初始過飽和比,可得到 較短的成核引發 短的成核引發 時間。 時間。 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 此外,在分子模板的影響下可 在更短的 時間內來引發共晶系統成核過程,提供較低在更短的 時間內來引發共晶系統成核過程,提供較低在更短的 時間內來引發共晶系統成核過程,提供較低Gibbs能障和成 障和成 核的臨界尺寸 , 以及較高的 成核速率 和相對生長速率。 相對生長速率。 不同條件下所形成的產物經由 不同條件下所形成的產物經由 PXRD、FTIR、DSC和 TGA的鑑定,證實 的鑑定,證實 的鑑定,證實 為苯甲酸 -苯甲酸鈉的 2:1共晶 。最後,這些 。最後,這些 。最後,這些 。最後,這些 研究 結果 說明不論是 從動力學或是熱的角度, 苯甲酸 -苯甲酸鈉的 2:1共晶的形成是可行
摘要(英) More than 65% of new drug candidates in pharmaceutical industry are poorly aqueous soluble drug. Co-crystallization technique can be used to overcome this problem through enhancing the high-end product purification and bioavailability of the drug by combining the API (Active Pharmaceutical Ingredient) with the co-former agent. In this work, co-crystallization of benzoic acid as the API with sodium benzoate as the co-former in co-solvent of 4:1 v/v of ethanol-water was generated by reaction crystallization method. A clear saturated solution was prepared by diluting Solution A containing 17.22 g (0.141 mol) of benzoic acid (HBz) in 50 mL of 4:1 v/v ethanol – water co-solvent and Solution B containing 1.89 g (0.047 mol) of sodium hydroxide (NaOH) in 6 mL of 2:1 v/v ethanol – water co-solvent. The solution then was cooled from room temperature to 16oC until the crystals were generated and the solution became turbid, indicating that the system had reached the end of the induction time, τ, of crystallization which can be used to determine some fundamental kinetic and thermodynamic parameters of nucleation and crystal growth, such as: the interfacial energy, γ, the Gibbs energetic barrier, ΔGcr, the nucleation rate, J, the critical size of stable nuclei, rc, and the relative growth rate, RG. All of these parameters were evaluated with different initial supersaturation ratio of the system, S0, which were: 1.66, 1.54, 1.48, and 1.43. To study the effect of templating in co-crystal system, about 1.5 wt % template of: sodium benzoate, 2:1 co-crystal of benzoic acid-sodium benzoate, and 1:1 co-crystal of benzoic acid-sodium benzoate were
iii
introduced for each system with different S0. In general, the induction times for all systems ranged from 3 to 40 minutes, where the higher S0 value gave the faster τ value. Moreover, introducing a template in the system gave a faster induction time, τ. ΔGcr and rc decreased, while J and RG increased on a faster induction time, indicating that co-crystallization thermodynamic and kinetic were directly related to the initial concentration of the drug. The final product of the solid crystals for each system was verified as 2:1 co-crystal of benzoic acid – sodium benzoate by PXRD, FTIR, DSC, and TGA. Finally, these results showed that co-crystallization of API, benzoic acid, with its co-former, sodium benzoate, was feasible, both kinetically and thermodynamically.
關鍵字(中) ★ 共晶 關鍵字(英) ★ Co-crystal
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgement iv
List of Figures viii
List of Tables xvi
List of Schemes xviii
Chapter 1 Introduction 1
11 Drug-Related Issues 1
12 Brief Introduction of Co-crystal 2
13 Brief Introduction of Benzoic Acid and Sodium Benzoate 4
14 Templating Crystallization 9
15 Synthesis of 2:1 Co-crystal of Benzoic Acid–Sodium Benzoate by Reaction Crystallization through Cooling Method 11
16 Conceptual Framework 16
17 References 18

Chapter 2 Experimental Materials and Methods 23
21 Materials 23
211 Chemicals 23
212 Solvents 24
22 Experimental Procedures 25
221 Solubility Measurement of the Basic Materials 25
222 Synthesis of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate by Reaction Crystallization 27
223 Co-crystallization of 2:1 Co-crystal of Benzoic Acid – Sodium Benzoate by Cooling Method 29
224 Templating Experiment 32
225 Stability Test 36
23 Analytical Measurements 37
231 Optical Microscopy (OM) 37
232 Fourier Transform Infrared (FTIR) Spectroscopy 38
233 Differential Scanning Calorimetry (DSC) 39
234 Thermal Gravimetric Analysis (TGA) 41
235 Powder X-ray Diffraction (PXRD) 42
236 Ultraviolet and Visible Spectrometer (UV-Vis) 43
24 References 44

Chapter 3 Results and Discussion 45
31 Crystallization Behavior of 2:1 Co-crystal of Benzoic Acid-Sodium Benzoate and the Templating Effect 47
311 Concentration Calibration 47
312 Induction Time Profile of Initial Supersaturation Ratio, So 48
313 Supersaturation and Nucleation Mechanism 50
314 Crystal Growth Mechanism 69
32 Characteristic Study of 2:1 Co-crystal of Benzoic Acid-Sodium Benzoate and the Effect of Templating 87
321 Crystallization Characteristic of Pure 2:1 Co-Crystal of Benzoic Acid - Sodium Benzoate 87
322 The Effect of Templating in Crystallization Characteristic of 2:1 Co-Crystal of Benzoic Acid - Sodium Benzoate 96
33 References 102
Chapter 4 Conclusions and Future Works 105
41 Conclusions 105
42 Future Works 107
43 References 108
參考文獻 1 Patel, V. R.; Agrawal, Y. K. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 81–87.
2 Sikarra, D.; Shukla, V.; Kharia, A.A.; Chatterjee, D.P. Techniques for Solubility Enhancement of Poorly Soluble Drugs: An Overview. J. Med. Pharm. Sci. 2012, 1, 1-22. 3 Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1-10.
4 Prohens, R.; Puigjaner, C. Crystal Engineering Studies: Polymorphs and Co-Crystals, 1st ed.; Centres Científics i Tecnològics. Universitat de Barcelona: Barcelona, BCN, 2012; pp. 3-4. 5 Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Kulkarni, P.V.; Sakhare, S.S. Co-Crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients. Indian J. Pharm. Sci. 2009, 71 (4), 359-370.
6 Kotak,U.; Prajapati,V.; Solanki, H.; Jani, G.; Jha, P. Co-Crystallization Technique Its Rationale and Recent Progress. J. Pharm. Pharm. Sci. 2015, 4 (04), 1484-1508.
7 Sheikh, A.Y.; Rahim, S.A.; Hammond, R.B.; Roberts, K.J. Scalable Solution Co-Crystallization: Case of Carbamazepine-Nicotinamide I. CrystEngComm 2008, 11 (3), 501-509. 8 Benzoic Acid and Salyclic Acid (topical). https://www.drugs.com/mtm/benzoic-acid-and-salicylic-acid-topical.html (accessed June 5, 2017)
9 Remington, J. P. The Science and Practice of Pharmacy, 2nd ed.; Lippincott Williams &
19
Wilkins: Maryland, Md., 2006; pp: 748. 10 Häberle, J.; Boddaert, N.; Burlina, A.; Chakrapani, A.; Dixon, M.; Huemer, M.; Karall, D.; Martinelli, D.; Crespo, P.; Santer, R.; Servais, A.; Valayannopoulos, V.; Lindner, M.; Rubio, V.; Dionisi-Vici, C. Suggested Guidelines for The Diagnosis and Management of Urea Cycle Disorders. Orphanet J. Rare Dis. 2012, 7 (32), 1-30.
11 World Health Organization. Benzoic Acid and Sodium Benzoate: Concise International Chemical Assessment Document No. 26; Geneva, GA, 2000.
12 Sim, G.A.; Robertson, J.M.; Goodwin, T.H. The Crystal and Molecular Structure of Benzoic Acid. Acta Crystallogr. 1955, 8 (3), 157-164.
13 Martin, T.; Gorelik, T.E..; Greim, D.; Butterhof, C.; Kolb, U.; Senker, J.; Breu, J. Microphase Separation Upon Crystallization of Small Amphiphilic Molecules: ‘Low’ Temperature Form II of Sodium Benzoate (E 211). CrystEngComm 2016, 31 (18), 5779–5966.
14 Deun, R.K.; Ramaekers, J.; Nockemann, P.; Hecke, K.V.; Meervelt, L.V.; Binnemans, K. Alkali Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains, J. Inorg. Chem. 2005, 2005 (3), 563-571.
15 Butterhof, C.; Martin,T.; Milius, W.; Breu, J. Microphase Separation with Small Amphiphilic Molecules: Crystal Structure of Preservatives Sodium Benzoate (E 211) and Potassium Benzoate (E 212). Z. Anorg. Allg. Chem. 2013, 639 (15), 2816–282.
16 Svoboda, S.; MacFhionnghaile, P.; McGinty, J, Connor, L.E.; Oswald, I. D.H.; Sefcik, J.
20
Continous Co-crystallization of Benzoic Acid and Isonicotinamide by Mixing-Induced Supersaturation: Exploring Oppurtunities Between Reactive and Antisolvent Crystallization Concepts. Cryst. Growth Des. 2017, 17 (4), 1902-1909.
17 Skovgaard, S.; Bond, A.D. Co-crystallisation of Benzoic Acid Derivatives with N-Containing Bases in Solution and by Mechanical Grinding: Stoichiometric Variants, Polymorphism and Twinning. CrystEngComm 2009, 11 (3), 444–453.
18 Butterhof,C.; Milius,W.; Breu, J. Influence of Cation Size on the Co-crystallisation of Benzoic Acid with Different Benzoates. Z. Anorg. Allg. Chem. 2013, 639 (2), 308-311.
19 Butterhof, C.; Barwinkel, K.; Senker, J.; Breu, J. Polymorphism in Co-Crystals: A Metastable Form of the Ionic Co-Crystal 2HBz.1NaBz Crystallized by Flash Evaporation. CrystEngComm 2012, 14 (20), 6744-6749.
20 Butterhoff, C.; Milius, W.; Breu, J. Co-Crystallization of Benzoic Acid with Sodium Benzoate: The Significance of Stoichiometry. CrystEngComm 2012, 14 (11), 3945 – 3950.
21 Lee, H.L.; Lee, T. Direct Co-crystal Assembly from Synthyesis to Co-crystallization. CrystEngComm 2015, 47 (17), 8967-9244.
22 Davey, R.J.; Garside, J. Phase Equilibria and Crystallization Techniques in from Molecules to Crystallizers, 1st ed.; Oxford University Press Inc.: Oxford, OFE, 2000; pp: 26.
23 Urbanus, J.; Roelands, C.P.M.; Horst, J.H.; Verdoes, D. Jansens, P.J. Screening for Templates that Promote Crystallization. Food Bioprod. Process 2008, 86 (2), 116–121.
24 Agnew, L. R.; McGlone, T.; Wheatcroft, H. P.; Robertson, A.; Parsons, A. R.; Wilson, C. C. Continuous Crystallization of Paracetamol (Acetaminophen) Form II: Selective Access to a Metastable Solid Form. Cryst. Growth Des. 2017, 17 (5), 2418–2427.
25 Agnew, L.R.; Cruickshank, D.L.; McGlone, T; Wilson, C.C. Controlled Production of the Elusive Metastable Form II of Acetaminophen (Paracetamol): A Fully Scalable Templating Approach in A Cooling Environment. Chem. Commun. 2016, 52 (46), 7368-7371.
26 Hornedo, N.R.; Nehm, S. J.; Seefeldt, K. F.; Torres, Y. P.; Falkiewicz, C. J. Reaction Crystallization of Pharmaceutical Molecular Complexes. Mol. Pharm. 2006, 3 (3), 362–367. 27 Pharmaceutical “Quality by Design” (QbD): An Introduction, Process Development and Applications.http://learnaboutgmp.com/pharmaceutical-quality-by-design-qbd-an introduction-process-development-and-applications. (accessed July 4, 2017)
28 Lee, T.; Chen, Y. H; Wang, Y. W. Effect of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate. Cryst. Growth Des. 2007, 8 (2), 415-426.
29 Quon, J, L.; Chadwick, K.; Wood, G.P.F.; Sheu, I.; Brettmann, B.K.; Myerson, A.S.; Trout, B. L. Templated Nucleation of Acetaminophen on Spherical Excipient Agglomerates. Langmuir 2013, 29 (10), 3292−3300. 30 Kuldipkumar, A.; Kwon, G. S.; Zhang, G. G. Z. Determining the Growth Mechanism of
22
Tolazamide by Induction Time Measurement. Cryst. Growth Des. 2007, 7 (2), 234–242.
31 Zhou,L.; Wang, Z.; Zhang, M.; Guo, M.; Xu, S.; Yin, Q. Determination of Metastable Zone and Induction Time of Analgin for Cooling Crystallization. Chin. J. Chem. Eng. 2017, 25 (3) 313–318.
32 Sako, K.; Furukawa, Y.; Nakajima, K. Advances in Crystal Growth Research, 1st ed.; Elsevier Science B.V.: Netherland, NL, 2001; pp: 406-407.
33 Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, OFE, 2001; pp: 181-187.
指導教授 李度(Tu Lee) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明