博碩士論文 104324043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.133.155.48
姓名 許祐誠(Yu-Cheng Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在不同尺度下的混合對苯甲酸-苯甲酸鈉共晶體所形成的化學劑量與粒徑分佈之效應
(The Effects of Macro-, Meso-, and Micro-Mixing on the Stoichiometry and Particle Size Distribution of Benzoic Acid-Sodium Benzoate Co-crystals)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 共晶是改善藥物溶解度的方法之一,近幾年發展尤為快速,但少有研究探討混合對共晶製程的影響,因此此篇研究的主要目的是利用U-tube探討不同尺度的混合效應對苯甲酸(benzoic acid)-苯甲酸鈉(sodium benzoate)共晶的化學計量比和粒徑分佈的影響進行討論。根據文獻, 1:1苯甲酸-苯甲酸鈉共晶用甲醇溶劑研磨法合成、Form A 2:1苯甲酸-苯甲酸鈉共晶用乙醇-水(4:1 v/v)溶劑研磨法或在乙醇溶劑中蒸發合成、Form B 2:1苯甲酸-苯甲酸鈉共晶用在甲醇溶劑中蒸發合成,然而,我們則是使用純水當溶劑進行反應直接得到共晶,鹽酸與苯甲酸鈉進行化學反應形成苯甲酸,苯甲酸再與溶劑中的苯甲酸鈉共結晶而得到苯甲酸-苯甲酸鈉共晶,得到的晶體透過熱重分析儀(TGA)、粉末繞X射線繞射儀(PXRD)等儀器檢測。我們還研究了不同的莫耳比、停留時間和濃度來尋找理想的操作條件。在本研究中,我們僅得到1:1和Form A 2:1苯甲酸-苯甲酸鈉共晶,並未合成出Form B 2:1苯甲酸-苯甲酸鈉共晶。我們已知1:1和Form B 2:1苯甲酸-苯甲酸鈉共晶是熱力學不穩定的相,Form A 2:1苯甲酸-苯甲酸鈉共晶是熱力學最穩定的相。在U-tube實驗中,我們觀察到在進料點的苯甲酸局部濃度會直接影響在半小時內結晶的組成。因此,透過不同的攪拌速率和鹽酸的進料速率等不同的混合效應來控制進料點的苯甲酸局部濃度來合成不同組成的產物。然而,根據Ostwald’s Rule of Stages,U-tube實驗所產生的結晶在經過4小時後都會轉化成1:1和2:1苯甲酸-苯甲酸鈉共晶混合物。根據Ostwald’s ripening,4小時後收穫的產物過篩後所繪製的粒徑分佈圖都有著相似的大小分佈。這項研究有助於共晶製程和產物知識的了解以及品質控制。
摘要(英) Co-crystal is regarded as an approach to promote the solubility of drugs and is developed rapidly in recent years. The aim of this thesis was to discuss the effects of macro-, meso-, and micro-mixing on the stoichiometry and particle size distribution of benzoic acid-sodium benzoate (HBz-NaBz) co-crystals. According to the literature, 1:1 co-crystals of HBz-NaBz was synthesized by the grinding method in methanol. The 2:1 co-crystals of HBz-NaBz of Form A was synthesized by grinding method in ethanol-water (4:1 v/v) or evaporating in ethanol, and the 2:1 co-crystals of HBz-NaBz of Form B was synthesized by evaporating in methanol. However, in this study, we used only the pure water as a solvent to obtain the co-crystals. The aqueous solution of hydrochloric acid and sodium benzoate were reacted to form benzoic acid, and benzoic acid was co-crystallized with sodium benzoate in the aqueous solution to give the co-crystals of HBz-NaBz. The stoichiometric ratios and crystal structure of the solids were characterized by thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD). Different molar ratios of HCl and NaBz, experiment times, and concentrations were screened for the optimal operating condition. In this thesis, only 1: 1 co-crystals of HBz-NaBz and Form A of 2:1 co-crystals of HBz-NaBz were obtained. Form B of 2:1 co-crystals of HBz-NaBz was not detected. 1: 1 co-crystals of HBz-NaBz and Form B of 2:1 co-crystals of HBz-NaBz were unstable forms, and Form A of 2:1 co-crystals of HBz-NaBz was the thermodynamically stable form. In the U-tube experiments, the local concentration of benzoic acid at the feed point would influence the composition of the solids harvested at t = 0.5 h. Therefore, the local concentration of benzoic acid at the feed point was influenced by the stirring rates of the turbine and propeller and the feed rate of HCl(aq) to create the different effects of macro-, meso-, and micro-mixing to produce the different compositions of solids. However, according to Ostwald′s Rule of Stages, the solids were transformed to a mixture of 1:1 and 2:1 co-crystals of HBz-NaBz at t = 4 h. According to Ostwald′s ripening, all the harvested samples were given more or less the same particle size distribution (PSD) at t = 4 h. This study relates process understanding and product knowledge to the quality control of co-crystals: the stoichiometric ratio and the PSD.
關鍵字(中) ★ 共晶 關鍵字(英) ★ Co-crystal
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgement iv
List of Figures viii
List of Tables xxi
List of Schemes xxii
Chapter 1 Introduction 1
1.1 Brief Introduction of Micromixing, Mesomixing, and Macromixing 1
1.2 Brief Introduction of Co-crystals 4
1.3 Brief Introduction of HBz, NaBz, and 1:1 and 2:1 Co-crytals of HBz-NaBz 5
1.4 Conceptual Framework 9
1.5 References 11
Chapter 2 Experimental Materials and Methods 14
2.1 Materials 14
2.1.1 Chemicals 14
2.1.2 Solvent 14
2.2 Experimental Procedures 14
2.2.1 The Study of Synthesizing Co-crystals of Benzoic Acid-Sodium Benzoate (HBz-NaBz) 14
2.2.2 The Study of Different Scales of Mixing Effect to Co-crystals of HBz-NaBz in the U-tube 21
2.2.3 Wet Sieve Analysis Method 24
2.2.4 Solubility Test 25
2.2.5 Study of Sampling Locations and Speed of Turbine on Crystal Breakage 27
2.3 Analytical Measurements 29
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy 29
2.3.2 Differential Scanning Calorimeter (DSC) 29
2.3.3 Thermal Gravimetric Analysis (TGA) 29
2.3.4 Powder X-ray Diffraction (PXRD) 30
2.3.5 Optical Microscopy (OM) 30
2.4 References 31
Chapter 3 Pharmaceutical Co-crystals 32
3.1 Results and Discussion 32
3.1.1 Use Tests 32
3.1.2 Different Molar Ratios of NaBz to HCl 40
3.1.3 Different Experiment Time of NaBz to HCl 45
3.1.4 Different Concentrations of NaBz to HCl 51
3.1.5 Different Scales of Mixing Effect to the Co-crystals of HBz-NaBz 55
3.1.6 Study of Sampling Locations and Speed of Turbine on Crystal Breakage 84
3.2 References 89
Chapter 4 Conclusions and Future Works 91
4.1 Conclusions 91
4.2 Future Works 93
4.3 References 95
參考文獻

Chapter 1
Danckwerts, P. V. The Effect of Incomplete Mixing on Homogeneous Reactions. Chem. Eng. Sci. 1958, 8 (1-2), 93-102.
Jones, A. G. Crystallization Process Systems, 1st ed,; Butterworth-Heinemann: Oxford, OFE, 2002; pp. 49.
Boodhoo, K.; Harvey, A. Process Intensification: An Overview of Principles and Practice, 1st ed,; John Wiley & Sons: Hoboken, NJ, 2013; pp. 12
Baldyga, J.; Bourne, J. R. Interactions between Mixing on Various Scales in Stirred Tank Reactors. Chem. Eng. Sci. 1992, 47 (8), 1839-1848.
Baldyga, J.; Podgorska, W.; Pohorecki, R. Mixing-Precipitation Model with Application to Double Feed Semibatch Precipitation. Chem. Eng. Sci. 1995, 50 (8), 1281-1300.
Torbacke, M.; Rasmuson, Å. C. Influence of Different Scales of Mixing in Reaction Crystallization. Chem. Eng. Sci. 2001, 56 (7), 2459-2473.
Aakeröy, C. B.; Forbes, S.; Desper, J. Using Cocrystals to Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. J. Am. Chem. Soc. 2009, 131 (47), 17048-17049.
Blagden, N.; De Matas, M.; Gavan, P. T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug. Deliv. Rev. 2007, 59 (7), 617-630.
McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; Park, A. Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API. Pharm. Res. 2006, 23 (8), 1888-1897.
Hickey, M. B.; Peterson, M. L.; Scoppettuolo, L. A.; Morrisette, S. L.; Vetter, A. Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product. Eur. J. Pharm. Biopharm. 2007, 67 (1), 112-119.
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy. L.; Rodríguez-Hornedo, N. Pharmaceutical Cocrystals and Poorly Soluble Drugs. Int. J. Pharm. 2013, 453 (1), 101-125.
Bethune, S. J.; Schultheiss, N.; Henck, J. O. Improving the Poor Aqueous Solubility of Nutraceutical Compound Pterostilbene through Cocrystal Formation. Cryst. Growth Des. 2011, 11 (7), 2817-2823.
Zhang, J.; Geng, H.; Virk, T. S.; Zhao, Y.; Tan, J.; Di, C.-A.; Xu, W.; Singh, K.; Hu, W,; Shuai, Z.; Liu, Y.; Zhu, D. Sulfur-Bridged Annulene-TCNQ Co-Crystal: A Self-Assembled ‘‘Molecular Level Heterojunction’’ with Air Stable Ambipolar Charge Transport Behavior. Adv. Mater. 2012, 24 (19), 2603-2607.
Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Continuous Engineering of Nano-Cocrystals for Medical and Energetic Applications. Sci. Rep. 2014, 4 (6575), 1-6.
Davidson, M. P.; Sofos, J. N.; Baranen, A. L. Antimicrobials in Food, 3rd ed.; CRC Press: Boca Raton, FL, 2005; pp. 11.
Breitkreutz, J.; Bornhöft, M.; Wöll, F.; Kleinebudde, P. Pediatric Drug Formulations of Sodium Benzoate: I. Coated Granules with a Hydrophilic Binder. Eur. J. Pharm. Biopharm. 2003, 56 (2), 247-253.
Butterhof, C.; Martin, T.; Milius, W.; Breu, J. Microphase Separation with Small Amphiphilic Molecules: Crystal Structure of Preservatives Sodium Benzoate (E 211) and Potassium Benzoate (E 212). Anorg. Allg. Chem. 2013, 639 (15), 2816-2821.
Martin, T. W.; Gorelik, T. E.; Greim, D.; Butterhof, C.; Kolb, U.; Senker, J.; Breu, J.; Microphase Separation upon Crystallization of Small Amphiphilic Molecules: ‘Low’ Temperature Form II of Sodium Benzoate (E 211). CrystEngComm 2016, 18 (31), 5811-5817.
Brittain, H. G. Vibrational Spectroscopic Studies of Cocrystals and Salts. 3. Cocrystal Products Formed by Benzenecarboxylic Acids and Their Sodium Salts. Cryst. Growth Des. 2010, 10 (4), 1990-2003.
Butterhof, C.; Milius, W.; Breu, J. Co-crystallisation of Benzoic Acid with Sodium Benzoate: the Significance of Stoichiometry. CrystEngComm 2012, 14 (11), 3945-3950.
Butterhof, C.; Bärwinkel, K.; Senker, J.; Breu, J. Polymorphism in Co-crystals: A Metastable Form of the Ionic Co-crystal 2 HBz-1 NaBz Crystallised by Flash Evaporation. CrystEngComm 2012, 14 (11), 6744-6749.
Lee, H. L.; Lee, T. Direct Co-crystal Assembly from Synthesis to Cocrystallization. CrystEngComm 2015, 17 (47), 9002-9006.

Chapter 2
Butterhof, C.; Bärwinkel, K.; Senker, J.; Breu, J. Polymorphism in Co-crystals: A Metastable Form of the Ionic Co-crystal 2 HBz-1 NaBz Crystallised by Flash Evaporation. CrystEngComm 2012, 14 (11), 6744-6749.
Brittain, H. G. Vibrational Spectroscopic Studies of Cocrystals and Salts. 3. Cocrystal Products Formed by Benzenecarboxylic Acids and Their Sodium Salts. Cryst. Growth Des. 2010, 10 (4), 1990-2003.
Torbacke, M.; Rasmuson, Å. C. Influence of Different Scales of Mixing in Reaction Crystallization. Chem. Eng. Sci. 2001, 56 (7), 2459-2473.
Kuo, C. S.; Chen, Y. H.; Lee, T. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.

Chapter 3
Wang, Y.; Zheng, J. M.; Fan, K.; Dai, W. L. One-Pot Solvent-Free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO2 Catalysts. Green. Chem. 2011, 13 (7), 1644-1647.
Butterhof, C.; Bärwinkel, K.; Senker, J.; Breu, J. Polymorphism in Co-crystals: A Metastable Form of the Ionic Co-crystal 2 HBz-1 NaBz Crystallised by Flash Evaporation. CrystEngComm 2012, 14 (11), 6744-6749.
Martin, T. W.; Gorelik, T. E.; Greim, D.; Butterhof, C.; Kolb, U.; Senker, J.; Breu, J.; Microphase Separation upon Crystallization of Small Amphiphilic Molecules: ‘Low’ Temperature Form II of Sodium Benzoate (E 211). CrystEngComm 2016, 18 (31), 5811-5817.
Deun, R. V.; Ramaekers, J.; Nockemann, P.; Hecke, K. V.; Meervelt, L. V.; Binnemans, K. Alkali-Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains. Eur. J. Inorg. Chem. 2005, 2005 (3), 563-571.
Lide, D. R. CRC Handbook of Chemistry and Physics, 74th ed.; CRC Press: Boca Raton, FL, 1993; pp. 3-42.
Roberts, R. M.; Gibert, J. C. Modern Experimental Organic Chemistry, 4th ed.; Saunders College Publishing: Philadelphia: PA,1985; pp. 222-223.
Brittain, H. G. Vibrational Spectroscopic Studies of Cocrystals and Salts. 3. Cocrystal Products Formed by Benzenecarboxylic Acids and Their Sodium Salts. Cryst. Growth Des. 2010, 10 (4), 1990-2003.
Butterhof, C.; Milius, W.; Breu, J. Co-crystallisation of Benzoic Acid with Sodium Benzoate: the Significance of Stoichiometry. CrystEngComm 2012, 14 (11), 3945-3950.
Baldyga, J.; Bourne, J. R. Interactions between Mixing on Various Scales in Stirred Tank Reactors. Chem. Eng. Sci. 1992, 47 (8), 1839-1848.
Torbacke, M.; Rasmuson, Å. C. Influence of Different Scales of Mixing in Reaction Crystallization. Chem. Eng. Sci. 2001, 56 (7), 2459-2473.
Marcant, B.; David, R. Experimental Evidence for and Prediction of Micromixing Effects in Precipitation. AlChE J. 1991, 37 (11), 1698-1710.
Hsu, Y. C.; Lee, T. A Cross-Performance Relationship Between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches. Drug Dev. Ind. Pharm. 2007, 33 (11), 1273-1284.
Mullin J. W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, OFE, 2001; pp. 320.

Chapter 4
Kulkarni, C.; Wood, C.; Gough, T.; Blagden, N.; Paradkar, A. Stoichiometric Control of Co-Crystal Formation by Solvent Free Continuous Co-Crystallization (SFCC). Cryst. Growth Des. 2015, 15 (12), 5648-5651.
Bag, P. P.; Patni, M.; Reddy, C. M. A Kinetically Controlled Crystallization Process for Identifying New Co-crystal Forms: Fast Evaporation of Solvent from Solutions to Dryness. CrystEngComm 2011, 13 (19), 5650-5652.
Alhalaweh, A.; Velaga, S. P. Formation of Cocrystals from Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying. Cryst. Growth Des. 2010, 10 (8), 3302-3305.
Chadwick, C.; Davey, R.; Sadiq, G.; Cross. W.; Pritchard, R. The Utility of a Ternary Phase Diagram in the Discovery of New Co-crystal Forms. CrystEngComm 2009, 11 (3), 412-414.
指導教授 李度(Tu Lee) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明