博碩士論文 104223024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.88.130
姓名 盛詠晴(Yung-Ching Sheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Effects of Internal Electron Withdrawing Moieties in D-A’-π-A Organic Sensitizers on Photo-physical Properties for DSSCs: A Computational Study)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 具有D–A’–π–A結構的染料相較於常見的D–π–A結構染料,在染料敏化太陽能電池(Dye-sensitized Solar Cells, DSSC)的應用上有著許多的優點。在D–π–A結構中加入內部的拉電子單元即為內部電子接收者(internal acceptor) 會使其光譜較紅位移且會延伸其吸收範圍,使得吸收光譜範圍變得更加寬廣。更重要的是還能增加染料分子的光穩定度。
在本研究中使用了密度泛函理論 (Density Function Theory, DFT) 、時間密度泛函理論 (TD-DFT)及第一原理方法計算非絕熱分子動態模擬(ab initio nonadiabatic molecular dynamics simulation, MD simulation)計算並分析D–A’–π–A染料在DSSC中所產生的光物理性質,尤其是針對internal acceptor對DSSC造成的影響的分析。本研究結果中呈現出加入強力的拉電子基(A’)會使染料產生新的吸收峰,以及使最大吸收峰產生紅位移的現象,此兩種現象將有助於產生更高比率的光電轉換效率。此外研究結果中也呈現了加入強力的拉電子基(A’)會產生明顯的雙重電子轉移的特徵。雙重電子轉移代表著在激發態時,電子密度會同時轉移至internal acceptor 及末端電子接收者(terminal acceptor)。特別是於光激發時,internal acceptor會捕捉住大量的電子密度。
另外在溫度300K進行的ab initio分子動態模擬的結果中發現了隨著時間經過,在激發態時電荷密度轉移至internal acceptor 及terminal acceptor的變化非常微小。其結果代表著在300K的熱動能還不足以推動電荷密度從internal acceptor轉移至terminal acceptor;或者是沒有產生一個足以推動電荷密度從internal acceptor轉移至terminal acceptor的反應座標。在此研究中還發現了D–A’–pi–A染料具有較低的激發太氧化電位(Excited-state Oxidation Potential, ESOP),由此也可以證明D–A’–π–A染料具有較佳的光穩定度。由本研究針對D–A’–π–A電荷傳輸的探討,給未來在工程設計方面提供了合理的理論基礎。
摘要(英)
The dyes with D–A’–π–A configuration which are different to traditional D–π–A framework have several advantages on DSSC applications. Introduction of an internal acceptor into the D–π–A framework red-shifts absorption spectra and also expands its range. More importantly, D–A’–π–A dyes show particular photo-stability. In this study, we employed density function theory (DFT), time-dependent DFT (TD-DFT), as well as ab initio nonadiabatic molecular dynamics (MD) simulations to investigate the photophysical properties of D–A’–π–A dyes on DSSC performance, in particular, the effects of internal acceptors. Our calculations show introduction of a strong electron-withdrawing A’ moiety generates a new band and red-shifts the λmax band, which can potentially, contributes to the photo-to-current conversion. Moreover, the absorption bands exhibit significant characters of dual charge transfer; the excited electron density is transferred to the internal and terminal acceptors at the same time. Particularly, the internal acceptor traps significant amount of electron density upon photo-excitation. The ab initio MD simulations at 300K show small amount of excited electron density is pushing and pulling between the internal and terminal acceptors; the thermal energy is not higher enough or there is no suitable reaction coordinates.to drive the electron density from the internal acceptor to the terminal acceptor. Our calculations shows the D–A’–π–A dyes own a low-lying excited-state oxidation potential, crucial features of photo-stability. Our study investigates the nature of charge-transfer of D–A’–π–A dyes giving theoretical basis for further rational engineering.
關鍵字(中) ★ 染料敏畫太陽能電池
★ 拉電子基
關鍵字(英) ★ DSSCs
★ electron withdrawing groups
論文目次 摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures v
List of Tables vi
Chapter 1: Introduction 1
Chapter 2: Computational Methods 8
Chapter 3: Results and Discussion 10
3-1 Studied Molecules 10
3-2 Energy Level of Building Blocks 12
3-3 Ground-State Molecular Geometries 14
3-4 UV-Vis Spectra in Solution 16
3-5 UV-Vis Spectra of Dyes Adsorbed on TiO2 26
3-6 Excited-state Oxidation Potential and Photo-Stability 33
3-7 Ab Initio Nonadiabatic Molecular Dynamics Simulations 35
Chapter 4: Conclusion and Summary 38
References: 40
參考文獻
References:
1. Gupta, A.; Armel, V.; Xiang, W.; Bilic, A.; Evans, R. A., New Organic Sensitizers Using 4-(Cyanomethyl)Benzoic Acid as an Acceptor Group for Dye-Sensitized Solar Cell Applications. Dyes Pigm. 2015, 113, 280-288.
2. Dai, P.; Yang, L.; Liang, M.; Dong, H.; Wang, P.; Zhang, C.; Sun, Z.; Xue, S., Influence of the Terminal Electron Donor in D-D-Pi-a Organic Dye-Sensitized Solar Cells: Dithieno[3,2-B:2′,3′-D]Pyrrole Versus Bis(Amine). ACS Appl Mater Interfaces 2015, 7, 22436-47.
3. Chai, Q.; Li, W.; Zhu, S.; Zhang, Q.; Zhu, W., Influence of Donor Configurations on Photophysical, Electrochemical, and Photovoltaic Performances in D−p–A Organic Sensitizers. ACS Sustainable Chemistry & Engineering 2014, 2, 239-247.
4. Wu, Y.; Zhu, W., Organic Sensitizers from D- p -A to D-A- p -A: Effect of the Internal Electron-Withdrawing Units on Molecular Absorption, Energy Levels and Photovoltaic Performances. Chem. Soc. Rev. 2013, 42, 2039-58.
5. Chen, C.-Y., et al., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3, 3103-3109.
6. Sekar, M. S. R.; Palani, E.; Sambandam, A., One-Pot Synthesis of Metal Free Organic Dyes Containing Different Acceptor Moieties for Fabrication of Dye-Sensitized Solar Cells. Tetrahedron Lett. 2013, 54, 3132–3136.
7. Tseng, C. Y.; Taufany, F.; Nachimuthu, S.; Jiang, J. C.; Liaw, D. J., Design Strategies of Metal Free-Organic Sensitizers for Dye Sensitized Solar Cells: Role of Donor and Acceptor Monomers. Org. Electron. 2014, 15, 1205-1214.
8. Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 874-880.
9. Liu, B.; Wu, W.; Li, X.; Li, L.; Guo, S.; Wei, X.; Zhu, W.; Liu, Q., Molecular Engineering and Theoretical Investigation of Organic Sensitizers Based on Indoline Dyes for Quasi-Solid State Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 8985-92.
10. Chang, D. W.; Lee, H. J.; Kim, J. H.; Park, S. Y.; Park, S.-M.; Dai, L.; Baek, J.-B., Novel Quinoxaline-Based Organic Sensitizers for Dye-Sensitized Solar Cells. Org. Lett. 2011, 13, 3880-3883.
11. Qu, S.; Wu, W.; Hua, J.; Kong, C.; Long, Y.; Tian, H., New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 1343-1349.
12. Ying, W.; Guo, F.; Li, J.; Zhang, Q.; Wu, W.; Tian, H.; Hua, J., Series of New D-A- p -A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2012, 4, 4215-4224.
13. He, J.; Wu, W.; Hua, J.; Jiang, Y.; Qu, S.; Li, J.; Long, Y.; Tian, H., Bithiazole-Bridged Dyes for Dye-Sensitized Solar Cells with High Open Circuit Voltage Performance. J. Mater. Chem. 2011, 21, 6054.
14. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-s.; Tian, H., Organic D-a-Π-a Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2011, 21, 756-763.
15. Mao, J.; Guo, F.; Ying, W.; Wu, W.; Li, J.; Hua, J., Benzotriazole-Bridged Sensitizers Containing a Furan Moiety for Dye-Sensitized Solar Cells with High Open-Circuit Voltage Performance. Chem. Asian J. 2012, 7, 982-91.
16. Ci, Z.; Yu, X.; Bao, M.; Wang, C.; Ma, T., Influence of the Benzo[D]Thiazole-Derived p -Bridges on the Optical and Photovoltaic Performance of D–p–A Dyes. Dyes Pigm. 2013, 96, 619-625.
17. Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu, W., Constructing Organic D-A- p -A-Featured Sensitizers with a Quinoxaline Unit for High-Efficiency Solar Cells: The Effect of an Auxiliary Acceptor on the Absorption and the Energy Level Alignment. Chemistry - A European Journal 2012, 18, 8190-8200.
18. Ying, W. J.; Yang, J. B.; Wielopolski, M.; Moehl, T.; Moser, J. E.; Comte, P.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Gratzel, M., New Pyrido[3,4-B] Pyrazine-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells. Chemical Science 2014, 5, 206-214.
19. Wang, X., et al., A Benzothiazole-Cyclopentadithiophene Bridged D-A-[Small p]-A Sensitizer with Enhanced Light Absorption for High Efficiency Dye-Sensitized Solar Cells. Chem. Commun. 2014, 50, 3965-3968.
20. Wu, Y.; Zhang, X.; Li, W.; Wang, Z.-S.; Tian, H.; Zhu, W., Hexylthiophene-Featured D-A- p -A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. Advanced Energy Materials 2012, 2, 149-156.
21. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W., D-A- p -A Featured Sensitizers Bearing Phthalimide and Benzotriazole as Auxiliary Acceptor: Effect on Absorption and Charge Recombination Dynamics in Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2012, 4, 1822-30.
22. Frisch, M. J., et al., Gaussian, Inc., Wallingford CT 2009.
23. Becke, A. D., Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
24. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.
25. Petersson, G. A.; Al‐Laham, M. A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms. J. Chem. Phys. 1991, 94, 6081-6090.
26. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-Pcm Solvation Model. J. Comput. Chem. 2003, 24, 669-681.
27. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chem. Phys. Lett. 2004, 393, 51-57.
28. Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P., Theoretical Investigation of Novel Carbazole-Fluorene Based D- p -A Conjugated Organic Dyes as Dye-Sensitizer in Dye-Sensitized Solar Cells (DSCs). J. Comput. Chem. 2011, 32, 1568-1576.
29. M, B.; G, G.; M, R.; F, P.; J, P.; M, P.; H, L., Newton-X: A Package for Newtonian Dynamics Close to the Crossing Seam. 2011, www.newtonx.org.
30. Barbatti, M.; Ruckenbauer, M.; Plasser, F.; Pittner, J.; Granucci, G.; Persico, M.; Lischka, H., Newton-X: A Surface-Hopping Program for Nonadiabatic Molecular Dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 26-33.
31. Barbatti, M.; Granucci, G.; Persico, M.; Ruckenbauer, M.; Vazdar, M.; Eckert-Maksić, M.; Lischka, H., The on-the-Fly Surface-Hopping Program System Newton-X: Application to Ab Initio Simulation of the Nonadiabatic Photodynamics of Benchmark Systems. Journal of Photochemistry and Photobiology A: Chemistry 2007, 190, 228-240.
32. Crespo-Otero, R.; Barbatti, M., Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene, Furan and 2-Phenylfuran. Theor. Chem. Acc. 2012, 131.
33. Andersen, H. C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72, 2384-2393.
34. Tanaka, H.; Nakanishi, K.; Watanabe, N., Constant Temperature Molecular Dynamics Calculation on Lennard‐Jones Fluid and Its Application to Watera). J. Chem. Phys. 1983, 78, 2626-2634.
35. Pittner, J.; Lischka, H.; Barbatti, M., Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009, 356, 147-152.
36. Hammes‐Schiffer, S.; Tully, J. C., Proton Transfer in Solution: Molecular Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667.
37. Butcher, J. C., A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations. Journal of the ACM 1965, 12, 124-135.
38. Sun, L., et al., Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. J. Am. Chem. Soc. 2008, 130, 6259-6266.
39. Liu, B.; Zhu, W.; Zhang, Q.; Wu, W.; Xu, M.; Ning, Z.; Xie, Y.; Tian, H., Conveniently Synthesized Isophorone Dyes for High Efficiency Dye-Sensitized Solar Cells: Tuning Photovoltaic Performance by Structural Modification of Donor Group in Donor-Pi-Acceptor System. Chem. Commun. 2009, 1766-8.
40. Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H., Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2008, 73, 3791-7.
41. Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
42. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595-6663.
43. Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C., Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett. 2005, 7, 1899-902.
44. Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144-5.
45. Li, W.; Du, C.; Li, F.; Zhou, Y.; Fahlman, M.; Bo, Z.; Zhang, F., Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chem. Mater. 2009, 21, 5327-5334.
46. Beaujuge, P. M.; Pisula, W.; Tsao, H. N.; Ellinger, S.; Mullen, K.; Reynolds, J. R., Tailoring Structure-Property Relationships in Dithienosilole-Benzothiadiazole Donor-Acceptor Copolymers. J. Am. Chem. Soc. 2009, 131, 7514-5.
47. Tang, Z. M.; Lei, T.; Jiang, K. J.; Song, Y. L.; Pei, J., Benzothiadiazole Containing D- p -A Conjugated Compounds for Dye-Sensitized Solar Cells: Synthesis, Properties, and Photovoltaic Performances. Chem. Asian J. 2010, 5, 1911-7.
48. Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.; Zou, Y., Copolymers from Benzodithiophene and Benzotriazole: Synthesis and Photovoltaic Applications. Polymer Chemistry 2010, 1, 1441.
49. Chang, Y. J.; Chow, T. J., Dye-Sensitized Solar Cell Utilizing Organic Dyads Containing Triarylene Conjugates. Tetrahedron 2009, 65, 4726-4734.
50. De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on Tio2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825-8831.
51. Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117, 3685-3700.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2017-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明