博碩士論文 104324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:13.58.5.57
姓名 吳紹暘(Shao-Yang Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金剛烷胺與金剛烷胺鹽酸鹽製程的研究與開發
(Process Research and Development of Amantadine and Amantadine Hydrochloride.)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 煤炭是一種廉價且易於取得的能源,在地球上的儲量豐富,但其缺點是無論用於發電還是焦化,煤都會產生大量的二氧化碳,為了使燃燒煤炭這個過程獲得更多的附加價值,我們將燃燒煤炭與高利潤藥物金剛烷胺結合,並進一步將金剛烷胺製成金剛烷胺鹽酸鹽,以改善金剛烷胺溶解度不佳的問題。本研究共分為兩個部分,首先透過初步的溶劑篩選以及再結晶來了解金剛烷胺與金剛烷胺鹽酸鹽的物化性質,發現金剛烷胺透過在不同溶劑中再結晶後具有層狀結構,此外,金剛烷胺鹽酸鹽則被發現在苯甲醇中再結晶後,會形成2:1的金剛烷胺鹽酸鹽-苯甲醇的溶劑化物。在製藥產業中,溶劑化物的形成是不被期望的,因為它影響活性藥物成分(API)的物化性質,如密度、熔點和溶解速率,因此,避免在反應過程中使用會形成溶劑化物的溶劑是很重要的。第二部分是金剛烷胺與金剛烷胺鹽酸鹽的合成,依據文獻,將反應物乙醯胺金剛烷水解來合成金剛烷胺,並利用水蒸氣蒸餾將金剛烷胺分離,從1H NMR的分析結果找出水解的最佳反應條件。經過PXRD的鑑定,發現合成的金剛烷胺具有部分的層狀結構,並透過熱分析儀器說明層狀結構對金剛烷胺帶來的影響。鹽酸金剛烷胺的合成過程原本需要進行蒸餾、添加反溶劑以及冷卻,這些步驟繁複且耗能。為了改善這些缺點,我們開發了一個簡單、強大且節能的製程,藉由在室溫下進行漿料結晶來製備金剛烷胺鹽酸鹽,並透過不同的分析儀器證明,不論是市售或是我們所合成的金剛烷胺,鹽酸金剛烷胺都可以成功地被合成。而在反應結束後,透過控制溫度的方式對鹽酸金剛烷胺的粒徑分布(PSD)進行控制,使其更有利於工業化的量產。
摘要(英) Coal is a cheap, easy-to-get energy, and abundant on Earth. Its disadvantage is the production of lots of carbon dioxide when it is used to generate electricity or coking. To get more added values during coal-coking, a high profit pharmaceutical product amantadine is combined, which is usually made to hydrochloride salt-amantadine hydrochloride, to overcome the poor solubility problem of amantadine. This study was divided into two parts. First, initial solvent screening and recrystallization were performed to understand the physicochemical properties of amantadine and amantadine hydrochloride crystals. It was found that amantadine having a lamellar assembly after recrystallization. In addition, the 2:1 amantadine hydrochloride.benzyl alcohol solvate was also discovered by re-crystallization of amantadine hydrochloride in benzyl alcohol. In the pharmaceutical industry, the formation of solvate was unpreferable and had many implications, because it affected the original physicochemical properties of the active pharmaceutical ingredient (API), such as density, melting point and dissolution rate. According to the original synthetic method, amantadine was synthesized by hydrolysis of 1-acetamidoadamantane, and was separated by steam distillation. The optimum reaction conditions for hydrolysis were determined by the results of 1H NMR analysis. The synthesized amantadine had partial lamellar assemblies as indicated by the PXRD pattern, and the effect of lamellar assembly on the amantadine was demonstrated by thermal analysis. The synthetic process of amantadine hydrochloride originally required the use of distillation, anti-solvent addition and cooling. Those steps were complicated and energy intensive. To overcome those shortcomings, a robust, intensified and energy-efficient process was developed by using slurry crystallization at room temperature for 30 min, and amantadine hydrochloride could be synthesized successfully as evidenced by NMR, PXRD, TGA and DSC regardless of the source materials used for amantadine. Furthermore, after the completion of the reaction, the particle size distribution of amantadine hydrochloride could be well controlled by the temperature cycles, which was more beneficial to industrial production.
關鍵字(中) ★ 製程開發 關鍵字(英) ★ Process Research and Development
論文目次

Chapter 1 Introduction 1
1.1 Research Motives and Backgrounds 1
1.2 Salt Formation 3
1.3 Brief Introduction of Amantadine and Amantadine Hydrochloride 6
1.4 Conceptual Framework 12
1.5 References 14
Chapter 2 Experimental Materials and Methods 19
2.1 Materials 19
2.1.1 Chemicals 19
2.1.2 Solvents 19
2.2 Experimental Procedures 22
2.2.1 Initial Solvent Screening 22
2.2.2 Solubility Test 23
2.2.3 Preparation of Amantadine Having a Lamellar Assembly by Evaporative Crystallization 23
2.2.4 Preparation of 2:1 Amantadine Hydrochloride.Benzyl Alcohol Solvate by Cooling Crystallization 24
2.2.5 Preparation of Single Crystal for Amantadine Hydrochloride by Cooling Crystallization 24
2.2.6 Chemical Synthesis of Amantadine 25
2.2.7 Chemical Synthesis of Amantadine Hydrochloride 27
2.2.7.1 Reference Method 27
2.2.7.2 Intensified Method 28
2.3 Analytical Measurements 30
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy 30
2.3.2 Nuclear Magnetic Resonance (NMR) 30
2.3.3 Differential Scanning Calorimetry (DSC) 30
2.3.4 Thermal Gravimetric Analysis (TGA) 31
2.3.5 Powder X-ray Diffraction (PXRD) 31
2.3.6 Single Crystal X-ray Diffraction (SXD) 31
2.3.7 Optical Microscopy (OM) 32
2.4 References 33
Chapter 3 Results and Discussion 34
3.1 Re-crystallization of Amantadine and Amantadine Hydrochloride 34
3.1.1 Initial Solvent Screening for Amantadine and Amantadine Hydrochloride 34
3.1.2 Preparation for Lamellar Assembly of Amantadine by Evaporative Crystallization 38
3.1.3 Preparation for Amantadine Hydrochloride.Benzyl Alcohol Solvate by Cooling Crystallization 40
3.2 Chemical Synthesis of Amantadine 44
3.3 Chemical Synthesis of Amantadine Hydrochloride and Particle Size Distribution Control 55
3.3.1 Chemical Synthesis of Amantadine Hydrochloride 55
3.3.2 Particle Size Distribution Control 63
3.4 Overall Mass Balance 65
3.5 References 66
Chapter 4 Conclusions and Future Works 69
4.1 Conclusions 69
4.2 Future Works 71
4.3 Reference 72
Appendix I Log sheet for Process of Synthesis of Amantadine 73
Appendix II Log sheet for Process of Synthesis of Amantadine Hydrochloride 87
References 104
參考文獻

Chapter 1
Preston, E.; William, L. G. (Koppers Co., USA) Method for Recovering and Refining Cyclopentadiene. US Patent 2,349,418, May 23, 1944.
Claus, M.; Claus, E.; Claus, P.; Hönicke, D.; Födisch, R.; Olson, M. Cyclopentadiene and Cyclopentene. Ullmann′s Encyclopedia of Industrial Chemistry. Wiley-VCH. 2002. p. 61-73.
Schleyer, P. von R. A Simple Preparation of Adamantane. J. Am. Chem. Soc. 1957, 79 (12), 3292-3292.
Schleyer, P. von R.; Donaldson, M. M.; Nicholas, R. D.; Cupas, C. Adamantane. Org. Synth. 1962, 42, 8
Sasaki, T.; Eguchi, S.; Toru, T. Synthesis of Adamantane Derivatives. I. Application of the Ritter Reaction to 1-Bromoadamantane. Bull. Chem. Soc. Jpn. 1968, 41 (1), 236-238.
Smith, G. W.; Williams, H. D. Some Reactions of Adamantane and Adamantane Derivatives. J. Org. Chem. 1961, 26 (7), 2207-2212.
He, J. X.; Wang H. B.; Zhou, H. Y. Synthesis of Amantadine Hydrochloride. Chinese J. Pharm. 2013, 44 (1), 1-3.
Singh, M. S.; Chowdhury, S. Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis. RSC Adv. 2012, 2 (11), 4547-4592.
Bose, D. S.; Fatima, L.; Mereyala, H. B. Green Chemistry Approaches to the Synthesis of 5-Alkoxycarbonyl-4-Aryl-3, 4-Dihydropyrimidin-2 (1 H)-Ones by a Three-Component Coupling of One-Pot Condensation Reaction: Comparison of Ethanol, Water, and Solvent-Free Conditions. J. Org. Chem. 2003, 68 (2), 587-590.
Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7 (5), 267-278.
Trost, B. M. On Inventing Reactions for Atom Economy. Acc. Chem. Res. 2002, 35 (9), 695-705.
Paulekuhn, G. S.; Dressman, J. B.; Saal, C. Trends in Active Pharmaceutical Ingredient Salt Selection Based on Analysis of the Orange Book Database. J. Med. Chem. 2007, 50 (26), 6665-6672.
Saal, C.; Becker, A. Pharmaceutical Salts: A Summary on Doses of Salt Formers from the Orange Book. Eur. J. Pharmacol. 2013, 49 (4), 614-623.
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, W.C.; Porter, C.J.H. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 2013, 65 (1), 315–499.
Cotton, M. L.; Lamarche, P.; Motola, S.; Vadas, E.B. L-649,923—The Selection of an Appropriate Salt Form Andpreparation of a Stable Oral Formulation. Int. J. Pharm. 1994, 109 (3), 237–249.
Liu, R. Water-Insoluble Drug Formulation. CRC Press. 2008. p. 543-545
Blagden, N.; De Matas, M.; Gavan, P. T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59 (7), 617-630.
Avdeef, A. Solubility of Sparingly-Soluble Ionizable Drugs. Adv. Drug Deliv. Rev. 2007, 59 (7), 568-590.
Serajuddin, A. T. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59 (7), 603-616.
Gould, P. L. Salt selection for basic drugs. Int. J. Pharm. 1986, 33 (1-3), 201-217.
David, S. Improving The Solubility and Dissolution of Poorly Soluble Drugs by Salt Formation and the Consequent Effect on Mechanical Properties. Ph.D. Dissertation, Aston University, 2005.
Stahl P. H.; Wermuth G. Handbook of Pharmaceutical Salts: Properties, Selection, and Use. Wiley-VCH. Zurich. 2002.
Bastin, R. J.; Bowker, M. J.; Slater, B. J. Salt Selection and Optimisation Procedures for Pharmaceutical New Chemical Entities. Org. Process Res. Dev. 2000, 4 (5), 427-435.
Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Lee, J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9 (6), 304-316.
Hart, A. Effect of Particle Size on Detergent Powders Flowability and Tabletability. J. Chem. Eng. Process Technol. 2015, 6 (1), 215-218.
Kim, S.; Wei, C.; Kiang, S. Crystallization Process Development of an Active Pharmaceutical Ingredient and Particle Engineering via the Use of Ultrasonics and Temperature Cycling. Org. Process Res. Dev. 2003, 7 (6), 997-1001.
Kolocouris, N.; Foscolos, G. B.; Kolocouris, A.; Marakos, P.; Pouli, N.; Fytas, G.; De Clercq, E. Synthesis and Antiviral Activity Evaluation of Some Aminoadamantane Derivatives. J. Med. Chem. 1994, 37 (18), 2896-2902.
Schwab, R. S.; England, A. C.; Poskanzer, D. C.; Young, R. R. Amantadine in the Treatment of Parkinson′s Disease. JAMA 1969, 208(7), 1168-1170.
Thomas, A.; Bonanni, L.; Gambi, F.; Di Iorio, A.; Onofrj, M. Pathological Gambling in Parkinson Disease is Reduced by Amantadine. Ann. Neurol. 2010, 68 (3), 400-404.
Caumont, A. S.; Octave, J. N.; Hermans, E. Amantadine and Memantine Induce the Expression of the Glial Cell Line-Derived Neurotrophic Factor in C6 Glioma Cells. Neurosci. Lett. 2006, 394 (3), 196-201.
Davies, W. L.; Grunert, R. R.; Haff, R. F.; McGahen, J. W.; Neumayer, E. M.; Paulshock, M.; Hoffmann, C. E. Antiviral Activity of 1-Adamantanamine (Amantadine). Science 1964, 144 (3620), 862-863.
Staničová, J.; Miškovský, P.; Šutiak, V. Amantadine: An Antiviral and Antiparkinsonian Agent. Vet. Med. Czech 2001, 46 (9), 244-256.
Feigin, V. Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet 2016, 388(10053), 1459-1544.
Vos, T. et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 310 Diseases and Injuries, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet 2016, 388(10053), 1545-1602
Foltynie, T.; Brayne, C. E.; Robbins, T. W.; Barker, R. A. The Cognitive Ability of an Incident Cohort of Parkinson′s Patients in the UK. The CamPaIGN Study. Brain. 2004, 127 (3), 550-560.
Lungare, S.; Bowen, J.; Badhan, R. Development and Evaluation of a Novel Intranasal Spray for the Delivery of Amantadine. J. Pharm. Sci. 2016, 105 (3), 1209-1220.
Centers for Disease Control and Prevention. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm (accessed March 8, 2017).
Bose, A.; Das, J. K.; Das, N. Pore Modification of Deca-Dodecasil-Rhombohedral Zeolite Membrane by Carbon Loading from in Situ Decomposition of 1-Adamantanamine for Improved Gas Separation. RSC Adv. 2015, 5 (82), 67195-67205.
Sun, T.; Wong, M. S.; Ying, J. Y. Synthesis of Amorphous, Microporous Silica with Adamantanamine as a Templating Agent. Chem. Commun. 2000, (20), 2057-2058.
Bélanger-Gariépy, F.; Brisse, F.; Harvey, P. D.; Butler, I. S.; Gilson, D. F. R. Structure of Adamantanamine Hydrochloride at 143 K. Acta. Cryst. 1987, 43 (4), 756-759.

Chapter 2
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
He, J. X.; Wang H. B.; Zhou, H. Y. Synthesis of Amantadine Hydrochloride. Chinese J. Pharm. 2013, 44 (1), 1-3.
Kim, S.; Wei, C.; Kiang, S. Crystallization Process Development of an Active Pharmaceutical Ingredient and Particle Engineering via the Use of Ultrasonics and Temperature Cycling. Org. Process Res. Dev. 2003, 7 (6), 997-1001.

Chapter 3
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
Buckley, J.; Cebe, P.; Cherdack, D.; Crawford, J.; Ince, B. S.; Jenkins, M.; Pan, J.; Reveley, M.; Washington , N.; Wolchover, N. Nanocomposites of Poly (Vinylidene Fluoride) with Organically Modified Silicate. Polymer 2006, 47 (7), 2411-2422.
Jang, J.; Oh, J. H. Novel Crystalline Supramolecular Assemblies of Amorphous Polypyrrole Nanoparticles Through Surfactant Templating. Chem. Comm. 2002, 19, 2200-2201.
Lee, T.; Lee, Y.; Lee, H. L.; Syue, Y. R.; Chiu, Y. H.; Liou, J. Y.; Sun, Y. S. Bio-Inspired Phase Change Materials Designed for High Specific Heat of Solid Phase. Thermochim. Acta. 2014, 591, 61-67.
Bhattacharya, S.; Saha, B. K. Polymorphism Through Desolvation of the Solvates of a van der Waals Host. Cryst. Growth Des. 2013, 13 (2), 606-613.
Sridevi, N.; Yusuff, K. K. Synthesis, Characterization and Kinetic Studies on Complex Formed between Amantadine Hydrochloride and Sodium Molybdate at Physiological pH. Indian J. Chem., Sect A 2008, 47 (6), 836-842.
Colthup, N. B.; Daly, L. H.; Wiberley S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Harcourt Brace Jovanovich : San Diego, 1990; pp 261-263.
Burra, S.; Reddy, P. S. Investigation of Solid-State Diversity of Amantadine Hydrochloride: Investigation of Amantadine HCl. LAP LAMBERT Acadamic, Germany, 2012, p. 42-46.
Takieddin, K.; Khimyak, Y. Z.; Fábián, L. Prediction of Hydrate and Solvate Formation Using Statistical Models. Cryst. Growth Des. 2015, 16 (1), 70-81.
Bazyleva, A. B.; Blokhin, A. V.; Kabo, A. G.; Kabo, G. J.; Emel’yanenko, V. N.; Verevkin, S. P. Thermodynamic Properties of 1-Aminoadamantane. J. Chem. Thermodynamics. 2008, 40 (3), 509-522.
Boyland, E.; Solomon, J. B. Metabolism of Polycyclic Compounds. 8 Acid-Labile Precursors of Naphthalene Produced as Metabolites of Naphthalene. Biochem. J. 1955, 59 (3), 518.
Masango, P. Cleaner Production of Essential Oils by Steam Distillation. J. Clean. Prod. 2005, 13 (8), 833-839.
Theodorou, V.; Paraskevopoulos, G.; Skobridis, K. A Mild Alkaline Hydrolysis of N-and N, N-Substituted Amides and Nitriles. ARKIVOC: Online J. Org. Chem. 2015, 2015 (vii), 101-112
Gobble, C.; Rath, N.; Chickos, J. The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas Chromatography. J. Chem. Eng. Data 2013, 58 (9), 2600-2609.
Chickos, J. S.; Acree Jr, W. E. Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001. J. Phys. Chem. Ref. Data, 2002, 31 (2), 537-698.
He, J. X.; Wang H. B.; Zhou, H. Y. Synthesis of Amantadine Hydrochloride. Chinese J. Pharm. 2013, 44 (1), 1-3.
Derdour, L.; Reckamp, J. M.; Pink, C. Development of a Reactive Slurry Salt Crystallization to Improve Solid Properties and Process Performance and Scalability. Chem. Eng. Res. Des. 2017, 121, 207-218.
Hu, J.; Cheng, Y.; Wu, Q.; Zhao, L.; Xu, T. Host− Guest Chemistry of Dendrimer-Drug Complexes. 2. Effects of Molecular Properties of Guests and Surface Functionalities of Dendrimers. J. Phys. Chem. B 2009, 113 (31), 10650-10659.
Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62 (21), 7512-7515.
Hu, J.; Cheng, Y.; Wu, Q.; Zhao, L.; Xu, T. Host− Guest Chemistry of Dendrimer-Drug Complexes. 2. Effects of Molecular Properties of Guests and Surface Functionalities of Dendrimers. J. Phys. Chem. B 2009, 113 (31), 10650-10659.

Chapter 4
Childs, S. L.; Chyall, L. J.; Dunlap, J. T.; Smolenskaya, V. N.; Stahly, B. C.; Stahly, G. P. Crystal Engineering Approach to Forming Cocrystals of Amine Hydrochlorides with Organic Acids. Molecular Complexes of Fluoxetine Hydrochloride with Benzoic, Succinic, and Fumaric Acids. J. Am. Chem. Soc. 2004, 126 (41), 13335-13342.
Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950-2967.
Sarcevica, I.; Orola, L.; Veidis, M. V.; Podjava, A.; Belyakov, S. Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids. Cryst. Growth Des. 2013, 13 (3), 1082-1090.
Lu, J.; Rohani, S. Preparation and Characterization of Theophylline− Nicotinamide Cocrystal. Org. Process Res. Dev. 2009, 13 (6), 1269-1275.
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: An Overview. Int. J. Pharm. 2011, 419 (1), 1-11.
Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning Mechanical Properties of Pharmaceutical Crystals with Multicomponent Crystals: Voriconazole as a Case Study. Mol. Pharmacol. 2015, 12 (3), 889-897.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and Spheroidization of Ammonium Nitrate: Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225 (1), 809-817.
Parmar, V. K.; Shah, S. A. Hydrochloride Salt Co-Crystals: Preparation, Characterization and Physicochemical Studies. Pharm. Dev. Technol. 2013, 18(2), 443-453.

Appendix
Buchiglas USA Corp. https://www.buchiglas-usa.com/en/products/glass-reactors-plants-pilo-t-plants.html
I. Addae-Mensah et al. WHO Expert Committee on Specifications for Pharmaceutical Preparations; WHO Technical Report Series — 929; WHO: Singapore, 2005
指導教授 李度(Tu Lee) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明