博碩士論文 104324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:13.58.1.103
姓名 鄒維倫(Wei-Lun Zou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發新型節能溫度感應疏水海綿之萃取式發酵槽於連續生產丁醇之研究
(Study on the Continuous Production of Butanol by Extracting Fermentation of New Energy-saving Temperature-responsive Hydrophobic Sponge)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前最重要的生質丁醇生產技術為「ABE發酵」系統,其主要的發酵產物為丙酮(acetone)、丁醇(butanol)、以及乙醇(ethanol),然而卻面臨到兩個難題,分別是提取及純化濃縮產物的程序造成能量損耗,以及菌株對丁醇耐受性不佳而有抑制作用產生的問題。因此本研究將使用一種新型節能溫度感應海綿作為一種吸附劑來提取丁醇,藉由在不同溫度下其親水/疏水性質改變,讓海綿具有可重複利用性,及節省產物分離程序的能量,並移除發酵產物丁醇以降低對菌株的抑制作用。
本實驗中使用聚二甲基矽氧烷Polydimethylsiloxane(PDMS)為主體,並在表面上修飾Poly(N-isopropylacrylamide) (PNIPAAm)的高分子複合海綿(PNIPAAm-PDMS)。在材料鑑定上用FTIR及TGA進行定性和定量分析,證明成功將PNIPAAm修飾到PDMS表面。由於PNIPAAm具有低臨界溶解溫度(lower critical solution temperature,LCST),因此,我們設計在發酵溫度(37℃)下進行海綿的丁醇吸附,以及在室溫(25℃)下進行海綿的丁醇脫附之操作程序。在丁醇溶液中,海綿吸附/脫附丁醇的結果也顯示,複合海綿能增加對丁醇的吸附/脫附能力。因此我們將此操作程序應用在連續萃取結合半連續式發酵系統中,在發酵的第48小時開始進行海綿萃取,並且在發酵的第60小時進行饋料。發酵結果與控制組的生產率(0.85 g/l day)及產率(0.181 g butanol/g glucose)相比,複合海綿連續萃取結合半連續式發酵系統,能得到最佳的生產率(2.00 g/l day)及產率(0.191 g butanol/g glucose)。
本研究中,我們使用一種新型節能溫度感應的疏水海綿,設計出高溫(37℃)吸附、低溫(25℃)脫附的節能回收製程,將有效降低丁醇回收所消耗的能量,以及透過海綿連續萃取移除發酵液中的丁醇,將有效減少抑制作用、提升丁醇產量。因此PNIPAAm-PDMS複合海綿作為萃取劑之發酵製程可行性,值得深入探討。
摘要(英)
Currently, the most important bio-butanol production technology is ”ABE fermentation” system, and the main fermentation products were acetone, butanol, and ethanol. However, ABE fermentation was facing two problems: first, high energy demanding separation and concentration downstream process; second, the poor tolerance of the bacteria to butanol. Therefore, this study used a new type of temperature-responsive sponge that can change its hydrophilic/ hydrophobic properties at different temperatures, as an adsorbent to extract butanol, trying to solve the problem of high energy demanding and butanol inhibition of bacteria.
In this study, the temperature-responsive sponge (PNIPAAm-PDMS) was prepared by polydimethylsiloxane (PDMS) as substrate and modified by poly(N-isopropylacrylamide) (PNIPAAm) at the surface. FTIR and TGA analysis were proved that PNIPAAm was successfully grafted onto PDMS. Due to PNIPAAm had a lower critical solution temperature, we designed the procedure to adsorb butanol at the fermentation temperature (37℃) and sponge at the room temperature (25℃). In the butanol solution, the results of sponge adsorption/desorbtion show that the PNIPAAm-PDMS sponge can increase the adsorption/desorption capacity of butanol. Therefore, we applied this procedure to continuous extraction with semi-continuous fermentation systems, sponge extraction and feed were carried out at the 48th hour and 60th hour, respectively. Compared with the productivity and yield of the control group, 0.85 g/l day and 0.181 g butanol/g glucose, the PNIPAAm-PDMS sponge continuous extraction with the semi-continuous fermentation system got the best productivity (2.00 g/l day) and yield (0.191 g butanol/g glucose).
In this study, we used a new energy-saving temperature-responsive hydrophobic sponge, designed high temperature (37℃) adsorption and low temperature (25℃) desorption, which could save the energy of ABE fermentation product separation program. It will effectively reduce the inhibitory effect and increase the butanol yield, through the sponge continuous extraction to remove the butanol in the fermentation broth. Therefore, it is worthy to study the feasibility of the fermentation process of PNIPAAm-PDMS composite sponge as extractant.
關鍵字(中) ★ ABE發酵
★ 萃取式發酵
關鍵字(英) ★ ABE fermentation
★ extractive fermentation
論文目次 目錄
中文摘要 i
英文摘要(Abstract) iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 再生能源 4
2-1-1 生質能源發展及應用 4
2-1-2 生質丁醇 5
2-2 ABE發酵 7
2-2-1 ABE發酵介紹 7
2-2-2 Clostridium acetobutylicum介紹 8
2-2-3 ABE發酵製程改良 11
2-3 萃取法 16
2-3-1 傳統萃取方法介紹 16
2-3-2 ABE發酵之萃取應用 18
2-4 聚二甲基矽氧烷(polydimethylsiloxane,PDMS) 20
2-4-1 PDMS 基本性質 20
2-4-2 PDMS海綿基本性質 22
2-5 聚異丙基丙烯醯胺(poly(N-isopropylacrylamide),PNIPAAm) 25
2-6 吸附基本原理 28
2-6-1 吸附現象 28
2-6-2 吸附種類 30
第三章 材料與方法 32
3-1 實驗規劃 32
3-2 實驗材料 33
3-2-1 實驗菌株 33
3-2-2 實驗藥品 34
3-2-3 實驗儀器與設備 36
3-2-4 數據使用參數設定 38
3-2-5 實驗裝置 38
3-3 實驗方法 41
3-3-1 菌種保存 41
3-3-2 培養基組成 41
3-3-4 PDMS海綿製備 44
3-3-5 PNIPAAm改質海棉製備 45
3-4 分析方法 47
3-4-1傅立葉轉換紅外線光譜(Fourier transform infrared spectroscopy,FTIR) 分析 47
3-4-2 TGA熱重損失(Thermogravimetric analyzer,TGA)分析 47
3-4-3 接觸角分析(Contact angle) 49
3-4-4 菌重濃度測定 49
3-4-5 葡萄糖殘量分析 50
3-4-6 丁醇濃度分析 51
第四章 實驗結果討論 54
4-1海綿改質前後之材料鑑定 54
4-1-1傅立葉紅外線光譜儀分析 54
4-1-2 熱重損失分析 56
4-1-3 接觸角 58
4-2 海綿改質前後之基本吸附性質 59
4-2-1海綿對葡萄糖溶液之吸附能力 59
4-2-2海綿對丁醇之吸附能力 60
4-3 溫感型海綿之節能應用 62
4-3-1 不同溫度下之吸附能力 62
4-3-2 不同溫度下之脫附能力 63
4-3-3海綿吸脫附次數之穩定度 65
4-4 溫感型海綿之發酵系統應用 67
4-4-1 控制組實驗 67
4-4-2 以海綿進行連續批次萃取之發酵實驗 68
4-4-3 半連續式發酵實驗 71
4-4-4海綿連續批次萃取結合半連續式發酵實驗 74
第五章 結論與建議 77
5-1 結論 77
5-2 建議 78
參考文獻 80
參考文獻 1. 吳孟隆,”探討以離子液體[Hmim][PF6]進行萃取發酵來提升Clostridium acetobutylicum 產丁醇之研究”,碩士論文,中央大學化材所 (2013)。
2. 施顏祥,” 2012年能源產業技術白皮書”,經濟部能源局 (2012)。
3. Lee, S.Y., J.H. Park, S.H. Jang, L.K. Nielsen, J. Kim, and K.S. Jung, “Fermentative butanol production by Clostridia”, Biotechnol Bioeng, 101(21), 209-228 (2008)
4. 周仕凱、許梅娟,”生質能源:新能源–生物產丁醇”,科學發展,433期,26-31 (2009)。
5. ”NIOSH Pocket Guide to Chemical Hazards #0076”, National Institute for Occupational Safety and Health (NIOSH).
6. Mathew A Rude, Andreas Schirmer, “New microbial fuels: a biotech perspective”, Current Opinion in Microbiology, 12(3), 274-281 (2009)
7. Jones, D. T., D. R. Woods, “Acetone-butanol fermentation revisited”, Microbiological Reviews, 4, 484-524 (1986)
8. Durre, P., “Fermentative butanol production: bulk chemical and biofuel”, Ann N Y Acad Sci, 353-362 (2008)
9. Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim, and K. S. Jung, “Fermentative butanol production by Clostridia”, Biotechnol Bioeng, 2, 209-228 (2008)
10. Ni, Y. and Z. Sun, “Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China”, Appl Microbiol Biotechnol, 3, 415-423 (2009)
11. Nolling, J., G. Breton, M.V. Omelchenko, K.S. Makarova, Q. Zeng, R. Gibson, H.M. Lee, J. Dubois, D. Qiu, J. Hitti, Y.I. Wolf, R.L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M.J. Daly, G.N. Bennett, E.V. Koonin, and D.R. Smith, “Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum”, J Bacteriol, 16, 4823-4838 (2001)
12. 李國鏞、游若荻,微生物學,華香園出版社,第四版,126-145 (1992)。
13. 許駿發,”工業技術人才培訓計畫講義-高溫丁醇發酵之理論與應用”,經濟部工業局 (1998)。
14. Lutke-Eversloh, T. and H. Bahl, “Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production”, Curr Opin Biotechnol, 5, 634-647 (2011)
15. 陳勁中,淺談生質丁醇及未來研發趨勢,石油通訊,20-23 (2011)。
16. Sang Yup Lee,Jin Hwan Park,Seh Hee Jang,Lars K. Nielsen,Jaehyun Kim,Kwang S. Jung, “Fermentative butanol production by Clostridia”, Biotechnology and Bioengineering, 101(2), 209-228 (2008)
17. Qureshi, N. and H.P. Blaschek, “Recovery of butanol from fermentation broth by gas stripping”, Renewable Energy, 557-564 (2001)
18. I. S. Maddox, N. Qureshi and IS. Roberts-Thomson, “Production of acetone-butanol-ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process”, Process Biochem, 30(3), 209-215 (1995)
19. Friedl, A., N. Qureshi, and I.S. Maddox, “Continuous acetone- butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation”, Biotechnol. Bioeng., (5), 518-527 (1991)
20. 黃浩宸,”探討可控式包埋Saccharomyces cerevisiae對於乙醇醱酵之影響” ,碩士論文,中央大學化材所 (2011)。
21. 蓋聖文,“探討以疏水性離子液體進行萃取式醱酵對Clostridium acetobutylicum產丁醇之影響”,碩士論文,中央大學化材所 (2012)。
22. 李魁然、陳榮輝、蔡惠安,“「綠金」純化術-滲透蒸發”,科學發展,429期 26-31 (2008)。
23. Desai, R.P. and e. T. Papoutsakis, “Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum”, Appl. Environ Microbiol, 3, 936-945 (1999)
24. 胡順惟、陳志魁、陳世晞,“萃取技術的回顧”,化學,第七十三卷第一期,79-92 (2015)。
25. Daşbaşı, T.; Saçmacı, Ş.; Ülgen, A.; Kartal, Ş., “A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry”, Food Chem., 174, 591-596 (2015)
26. Dang, N. A.; Mourao, M.; Kuijper, S.; Walters, E.; Janssen, H. G.; Kolk, A. H., “Direct detection of Mycobacterium tuberculosis in sputum using combined solid phase extraction–gas chromatography–mass spectrometry”, J. Chromatogr. B, 986-987, 115-122 (2015)
27. S. R. Roffler, Prof. H. W. Blanch, Prof. C. R. Wilke, “In-situ recovery of butanol during fermentation”, Bioproc. Eng., 2(1), 1-12 (1987)
28. S. Ishii, M. Taya, and T. Kobayashi, “Production of butanol by Clostridium acetobutylicum in extractive fermentation system”, J. Chem. Eng. Japan, 18, 125 (1985)
29. S. R. Roffler, H. W Blanch, and C. R. Wilke, “In situ extractive fermentation of acetone and butanol”, Biotechnology and Bioengineering, 31, 135-143 (1988)
30. H. González-Peñas, T. A. Lu-Chau, M. T. Moreira and J. M. Lema, “Solvent screening methodology for in situ ABE extractive fermentation”, Appl. Microbiol. Biotechnol, 98, 5915-5924 (2014)
31. 黃明宏,聚二甲基矽氧烷應用於可撓液晶顯示器的研究,碩士論文,中山大學光電工程所 (2009)。
32. P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array”, Lab Chip, 5, 44-48 (2005)
33. M. S. Kim, J. H. Yeon, J. K. Park, “A microfluidic platform for 3-dimensional cell culture and cell-based assays”, Biomed. Microdevices, 9(1), 25-34 (2007)
34. N. N. Ye, J. H. Qin, W. W. Shi, X. Liu, B. C. Lin, “Cell-based high content screening using an integrated microfluidic device”, Lab Chip, 7, 1696-1704 (2007)
35. Sung-Jin Choi, Tae-Hong Kwon, Hwon Im, Dong-Il Moon, David J. Baek, Myeong-Lok Seol, Juan P. Duarte, and Yang-Kyu Choi, “A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water”, Appl. Mater. Interfaces, 3, 4552-4556 (2011)
36. Aijuan Zhang, Mingjie Chen, Can Du, Huizhang Guo, Hua Bai, and Lei Li, “Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton”, Appl. Mater. Interfaces, 5, 10201-10206 (2013)
37. 陳泰源,“探討利用PDMS sponge進行萃取式發酵以提升Clostridium acetobutylicum產丁醇之研究”,碩士論文,中央大學化材所 (2015)。
38. Kathryn Haubert, Tracy Drier and David Beebe, “PDMS bonding by means of a portable, low-cost corona system”, Lab Chip, 6, 1548–1549 (2006)
39. C. K. Chiklis, J. M. Grasshoff, “Swelling of thin films. I. Acrylamide-N-isopropylacrylamide copolymers in water”, J. Polym. Sci. Part A-2, 8(9), 1617-1626 (1970)
40. Y. H. Bae, T. Okano and S. W. Kim, “Temperature dependence of swelling of crosslinked poly(N,N”-alkyl substituted acrylamides) in water”, J. Polym. Sci. B, 28(6), 923-936 (1990)
41. Qian Yu, Yanxia Zhang, Hong Chen, Zhaoqiang Wu, He Huang, Chi Cheng, “Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size”, Colloids and Surfaces B: Biointerfaces, 76, 468–474 (2010)
42. M. Heskins and J. E. Guillet, “Solution properties of poly(N-isopropylacrylamide)”, J. Macromol Sci. Chem., A2(8), 1441-1455 (1968)
43. S. Fujishige, K. Kubota and I. Ando, “Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide)”, J. Phys Chem.,93(8), 3311-3313 (1989)
44. H. G. Schild, “Poly (N-isopropylacrylamide): experiment theory and application”, Progress in Polymer Science, 17(2), 163-249 (1992)
45. T. Takezawa, Y. Mori and K. Yoshizato, “Cell culture on a thermo-responsive polymer surface”, Biotechnology, 8(9), 854-856 (1990)
46. A. S. Hoffman, “Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics”, j. Control. Release, 6(1), 297-305 (1987)
47. Dan Ma, Hengwu Chen, Dongyan Shi, Zhiming Li, Jinfu Wang, “Preparation and characterization of thermo-responsive PDMS surfaces grafted with poly(N-isopropylacrylamide) by benzophenone-initiated photopolymerization”, Journal of Colloid and Interface Science, 332, 85-90 (2009)
48. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid system”, Pure and Appl. Chem., 57(4), 603-619 (1985)
49. 蔣本基、張璞,“有機溶劑蒸氣之吸附及脫附研究”,工業污染防治,第58期 (1996)。
50. Aijuan Zhang, Mingjie Chen, Can Du, Huizhang Guo, Hua Bai, and Lei Li, “Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton”, ACS Appl. Mater. Interfaces, 5 (20), 10201–10206 (2013)
51. Guodong Sui, Jinyi Wang, Chung-Cheng Lee, Weixing Lu, Stephanie P. Lee, Jeffrey V. Leyton, Anna M. Wu, and Hsian-Rong Tseng,” Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels”, Anal. Chem., 78, 5543-5551 (2006)
52. Miller, G.L., “Use of dinitrosalicylic acid reagent for determination of reducing sugar”, Analytical Chemistry, 3, 426-428 (1959)
53. Xinxiang Zhang, Haiping Ye, Bo Xiao, Lianghong Yan, Haibing Lv, and Bo Jiang, “Sol−Gel preparation of PDMS/Silica hybrid antireflective coatings with controlled thickness and durable antireflective performance”, J. Phys. Chem. C, 114 (47), 19979–19983 (2010)
54. Mei-Yan Yang, Lei Tan, Hai-Xia Wu, Chuan-Jun Liu, Ren-Xi Zhuo, “Dual-stimuli-responsive polymer-coated mesoporous silica nanoparticles used for controlled drug delivery”, Journal of Applied Polymer Science, 132, 42395-42403 (2015)
55. Helene Jeskea, Arne Schirpb, Frauke Corneliusb, “Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC)”, Thermochimica Acta, 543, 165-171 (2012)
56. Scott Renneckar, Audrey G. Zink-Sharp, Thomas C. Ward, Wolfgang G. Glasser, “Compositional Analysis of Thermoplastic Wood Composites by TGA”, Journal of Applied Polymer Science, 93, 1484-1492 (2004)
57. Dan Li, Feigao Xu, Zhenghua Liu, Jiaqi Zhu, Qingjian Zhang, Li Shao, “The effect of adding PDMS-OH and silica nanoparticles on sol-gel properties and effectiveness in stone protection”, Applied Surface Science, 266, 368-374 (2013)
58. Ruitao Cha, Zhibin He, Yonghao Ni, “Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose”, Carbohydrate Polymers, 88(2), 713-718 (2012)
59. A. Hebeish, S. Farag, S. Sharaf, Th. I. Shaheen, “Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers”, Carbohydrate Polymers, 102, 159-166 (2014)
60. G. DiPaola-Baranyi, J.-M. Braun, and J. E. Guillet, “Partial molar heats of mixing of small molecules with polymers by gas chromatography”, Macromolecules, 11(1), 224-227 (1978)
61. Xia Yang, Chen Jinxun, Wu Zhen, Wang Tao, Li Jiding, “Measurement of solubility thermodynamic and diffusion kinetic characteristic of solvents in PDMS by inverse gas chromatography”, European Polymer Journal, 73, 259-267 (2015)
62. Paul C. Painter, John F. Graf, and Michael M. Coleman, “Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends”, Macromolecules, 24, 5630-5638 (1991)
63. 楊淳行,“探討以PDMS海綿萃取發酵系統連續生產丁醇之研究”,碩士論文,中央大學化材所 (2016)。
64. Alfonso Di Muccio, Silvana Girolimetti, Danilo Attard Barbini, Patrizia Pelosi, Tiziana Generali, Luciano Vergori, Giovanni De Merulis, Antonio Leonelli, Patrizia Stefanelli, “Selective clean-up applicable to aqueous acetone extracts for the determination of carbendazim and thiabendazole in fruits and vegetables by high-performance liquid chromatography with UV detection”, J. Chromatogr. A, 833, 61-65 (1999)
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明