參考文獻 |
[1] Akaike, H.(1974). A New Look at The Statistical Model Identification. IEEE Transactions on Automatic Control. 19,716-723.
[2] Berger, J, O.(1985). Statictical Decision Theory and Bayesion Analysis. 2nd Ed. New York: Springer-Verlag.
[3] Betro, B., and Ladelli, L.(1996). Point Process Analysis for Italian Seismic Activity. Applied Stochastic Models and Data Analysis. 12,75-105.
[4] Daley, D., and Vere-Jones, d.(1988). Anintroduction to the Theory of Point Processes, New York: Springer-Verlag.
[5] Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Image. IEEE Trans, Pat, Anal. Mach, Intel. 6, 721-741.
[6] Green, P.J.(1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika. 52, 711-732.
[7] Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, 57, 97-109.
[8] Hawkes, A. G.(1971). Point Spectra of Some Mutually Exciting Point Processes. Journal of the Royal Statistical Scicty. Ser. B 33,438-443.
[9] Kass, R. E., and Raftery, A, E, (1995). Bayes Factors, Journal of the American Statistical Association, 90, 773-795.
[10] kass, R. E., and Vaidyanathan, S. K. (1992). Approximate Bayes Factors and orthogonal parameters, with application to testing equality of two binomail proportions, Jownal of the Royal Statistical Socity. Ser. B 54, 129-144.
[11] Lomnitz, C.(1982). What Is a Gap? Bulletin of the Seismological Society of America. 72, 1411-1413.
[12] Metropolis, N.,Rosenbluth, A. W., Teller, A. H., and Teller, E.(1953). Equation of State Calculations by Fast Computing Machines, Journal of Chemical Physics, 21, 1087-1091.
[13] Musmeci, F. and Vere-Jones, D. (1992). A Space-Time Clustering Model for Historical Earthquakes, Annals of the Institute of Statistical Mathematics. 44, 1-11.
[14] Ogata, Y. (1988). Statistical Models, for Earthquake Occurrences and Residual Analysis for Point Processes. Annals Of the Enstitute of Statistical Mathematics,. 83, 9-27.
[15] Ogata, Y. (1989). Statistical Model for Standard Seismicity and Detection of Anomalies by Residual Analysis. Tectonophysics. 169,159-174.
[16] Ogata, Y., and Katsura, K.(1988). Likelihook Analysis of Spatial Inhomogeneity for Marked Point Patterns. Annals of the Institute of Statistical Mathematics. 40,29-39.
[17] Peruggia, M., and Santner, T.(1996)/ Bayesian Analysis of Time Evolution of Earthquakes, Journal of the American Statistical Association. 91, 1209-1218.
[18] Raftery, A. E. and Akman, A. E.(1986). Bayesian Analysis of a Poisson Process with a Change Point. Biometrika. 73, 85-89.
[19] Robert, C. P. (1994). The Bayesian Choice :A Decision-Theoretic Motivation. New York : Springer-Verlag.
[20] Ross, S. M. (1997). Simulation, 2nd Ed. San Diego: Academic Press.
[21] Schwarz, G. (1978). Estimating the Dimension of a Model. The Annal, of Statistics, 6, 461-464.
[22] Utsu, T. (1961). A Statictical Study on the Occurrence of Afterschocks. Geophysical Magazine. 30,521-605.
[23] Utsu, T. (1970). Aftershocks and Earthquake Statistics(II)-Further Investigation of Aftershocks and Other Earthquake Sequences Based on a New Classification of Earthquake Sequences. Journal of the Faculty of Science, Hokaido University, Ser. VII(Geophsics), 3, 197-266.
[24] 林志勳(1999). 花蓮地區地震資料之經驗貝氏分析。中央大學統計研究所碩士論文。 |