博碩士論文 104324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.135.209.249
姓名 羅雨承(Yu-Cheng Lo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討培養溫度對Pseudomonas taetrolens發酵乳清生產乳糖酸的影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今的社會,乳糖酸是一種被大量應用在人類生活之中的有機酸,舉凡食品、化妝品、製藥、生醫領域皆可見到其身影。乳糖酸之所以被如此廣泛的應用在各種不同的領域,主要是因為其具有出色的生物相容性、生物可分解性和抗氧化特性。目前製造乳糖酸的方法大多是利用化學合成的方式去生產,但合成過程卻會使用到對環境具有汙染性的金屬催化劑。然而,近年來發現了一種利用微生物發酵的方式去產生乳糖酸的方法。此方法即是使用Pseudomonas taetrolens發酵乳清生產乳糖酸。乳清是乳品製造中伴隨產生的副產物,每年全球產生的乳清中大約有30%沒有被妥善的運用,可能作為動物飼料抑或是農業用肥料,甚至是直接丟棄。而利用微生物發酵乳清生產乳糖酸來取代化學合成法可以避免使用到對環境不友善的催化劑,且微生物發酵法是利用廢棄物產生高附加價值產物的方法,其成本相對低廉,對環境也較友善,符合永續經營的概念。
  在微生物發酵中,環境溫度會大大地影響微生物的生理狀態和發酵行為,所以,此論文的目的便是探討在不同的培養溫度下對Pseudomonas taetrolens發酵乳清生產乳糖酸的影響,其中,討論了種菌培養時間、種菌培養溫度、搖瓶生產溫度、放大規模的生物反應器生產溫度及兩階段溫度操作,最後,在針對實驗結果做出產物動力學分析。由實驗結果發現,最佳的種菌培養時間為24小時,最佳種菌培養溫度為35℃,搖瓶最佳生產溫度為30℃,在此溫度乳糖酸產量及產率最高,但生產溫度為20℃時所獲得的菌重最多,因此利用兩階段溫度操作,第一階段溫度設定20℃促使產生較多菌重,然後第二階段再調整至30℃以利產物生成,在此操作下乳糖酸的產量為29.793 g/L;產率為0.198 g/L h,比起固定生產溫度30℃的操作產量提升了約14%;產率部分則提升了約13%,在生物反應器規模的生產溫度實驗,得到了類似搖瓶規模的實驗結果,不同的是兩階段溫度操作時,產率可比固定生產溫度30℃提升約20%,且明顯縮短了發酵時間。根據產物動力學分析,可以看出較佳的發酵表現中,其產物皆較屬於混合生長相關型,因此,若調整發酵溫度將可促使產物生成趨近理想的動力學模式,進而改善與加強發酵表現。
摘要(英) In today′s society, lactobionic acid is a kind of organic acid which is widely used in human life, it finds extensive applications in the fields of food, cosmetics, pharmaceuticals and biomedicine. It could be used in so many different fields, mainly because of its excellent biocompatible, biodegradable and antioxidant properties. Most of the current methods of producing lactobionic acid are produced by chemical synthesis, but the synthesis processes use harmful metal catalysts. However, in recent years, a method for producing lactobionic acid has been discovered by microbial fermentation. This method is producing lactobionic acid from whey by Pseudomonas taetrolens. Whey is the by-product produced in the manufacture of dairy products. About 30% of whey remains underutilized, most ending up being employed as animal feed, spread on agricultural land as fertilizer or even as waste. Producing lactobionic acid from whey by microorganism instead of using the chemical synthesis method can avoid the use of harmful catalysts. Furthermore, the microbial fermentation produces high value-added products from inexpensive feedstock such as polluting waste, so the cost of production is relatively low, and is more environmental friendly. It is consistent with the concept of sustainable development.
In microbial fermentation procedures, environmental temperature will greatly affect not only the physiological status but also the behavior of microorganisms. Ergo, the aim of this study was to investigate the effects of seed culture temperature and fermentation temperature on the production of lactobionic acid from whey by Pseudomonas taetrolens. Hence, the seed culture age, seed culture temperature, fermentation temperature in shake-flask and bioreactor, and two-stage fermentation temperature operation were all discussed in the present study. Finally, illustrate the ideal fermentation mode via the analysis of the product formation kinetics. The results of experiments showed that the optimal seed culture temperature was 35℃, and then the optimal fermentation temperature in shake-flask and bioreactor was 30℃. In this optimal operation, the yield and productivity of lactobionic acid were the highest among other operations, but the highest biomass concentration was obtained from the operation of which fermentation temperature was set at 20℃. Therefore, using the two-stage fermentation temperature operation, the first stage fermentation temperature was set at 20℃ to cause more biomass, and then the second stage fermentation temperature was shifted to 30℃ to enhance the production of lactobionic acid. In this operation in shake-flask, the yield of lactobionic acid was 29.793 g/L, which was about fourteen percent higher than that obtained from the operation of which fermentation temperature was fixed at 30℃. Besides, the productivity of lactobionic acid was 0.198 g/L h, which was about thirteen percent higher than that obtained from the operation of which fermentation temperature was fixed at 30℃. The results of fermentation temperature experiment conducted in bioreactor showed that the two-stage fermentation temperature operation shortened the fermentation time and the productivity of lactobionic acid was about twenty percent higher than that obtained from the operation of which fermentation temperature was fixed at 30℃. According to the analysis of the product formation kinetics, if the product formation is mixed-growth associated type, there will be a better fermentation performance. As a result, adjusting the seed culture temperature or fermentation temperature can make the product formation approaching the ideal type of the product formation kinetics model, thereby improving and enhancing the fermentation performance.
關鍵字(中) ★ Pseudomonas taetrolens
★ 溫度
★ 乳清
★ 乳糖酸
★ 產物動力學
關鍵字(英)
論文目次 摘要....................................................i
ABSTRACT...............................................ii
致謝...................................................iv
目錄....................................................v
圖目錄................................................viii
表目錄..................................................xi
一、緒論.................................................1
1-1  研究背景..........................................1
1-2  研究目的..........................................3
二、文獻回顧.............................................4
2-1  乳糖酸的介紹......................................4
2-1-1 乳糖酸的基本性質...................................4
2-1-2 市場價值..........................................5
2-1-3 製造方法..........................................7
2-2  實驗菌株的介紹....................................8
2-3  乳清的介紹........................................9
2-4  影響發酵表現的物理化學因子.........................10
2-4-1 培養基組成.......................................10
2-4-2 接菌量...........................................11
2-4-3 培養時間.........................................12
2-4-4 酸鹼值...........................................12
2-4-5 通氣速率.........................................12
2-4-6 攪拌速率.........................................12
2-4-7 發酵方式.........................................13
2-4-8 光照.............................................13
2-4-9 溫度.............................................13
三、實驗材料與方法.......................................14
3-1  實驗流程.........................................14
3-2  實驗規劃.........................................15
3-3  實驗材料.........................................16
3-3-1 實驗菌種.........................................16
3-3-2 實驗藥品.........................................16
3-3-3 實驗儀器與設備....................................17
3-4  實驗方法.........................................18
3-4-1 菌種固態培養.....................................18
3-4-2 種菌培養時間實驗..................................18
3-4-3 種菌培養溫度實驗..................................20
3-4-4 搖瓶規模之乳糖酸生產溫度實驗.......................21
3-4-5 搖瓶規模之乳糖酸兩階段生產溫度實驗..................23
3-4-6 生物反應器規模之乳糖酸生產溫度實驗..................24
3-4-7 生物反應器規模之乳糖酸兩階段生產溫度實驗............26
3-5  分析方法.........................................28
3-5-1 pH值分析.........................................28
3-5-2 菌重濃度分析......................................28
3-5-3 還原糖濃度分析....................................29
3-5-4 乳糖酸濃度分析....................................31
3-5-5 產物動力學分析....................................33
四、結果與討論...........................................35
4-1  不同的種菌培養時間對發酵影響.......................35
4-2  不同的種菌培養溫度對發酵影響.......................38
4-3  搖瓶規模下不同的乳糖酸生產溫度對發酵影響............41
4-4  搖瓶規模之乳糖酸兩階段生產溫度實驗結果..............44
4-5  生物反應器規模下不同的乳糖酸生產溫度對發酵影響.......47
4-6  生物反應器規模之乳糖酸兩階段生產溫度實驗結果.........50
4-7  產物動力學之討論..................................52
4-7-1 種菌培養溫度實驗之產物動力學分析...................52
4-7-2 搖瓶規模乳糖酸生產溫度實驗之產物動力學分析..........56
4-7-3 生物反應器規模乳糖酸生產溫度實驗之產物動力學分析.....60
五、結論與建議...........................................64
5-1  結論.............................................64
5-2  建議.............................................65
參考文獻................................................67
參考文獻 [1] Saúl Alonso, Manuel Rendueles and Mario Díaz “Bio-production of lactobionic acid: Current status, applications and future prospects”, Biotechnology Advances, Vol. 31, Iss. 8, pp. 1275-1291, December 2013.
[2] Folkert O. Belzer, Anthony M D′Alessandro, Robert M. Hoffmann, Stuart J. Knechtle, Alan Reed, John D. Pirsch, Murat Kalayoglu and Hans W Sollinger “The Use of UW Solution in Clinical Transplantation. A 4-year Experience”, Annals of Surgery, Vol. 215, Iss. 6, pp. 579-585, June 1992.
[3] Barbara A. Green, Ruey J. Yu and Eugene J. Van Scott “Clinical and cosmeceutical uses of hydroxyacids”, Clinics in Dermatology, Vol. 27, Iss. 5, pp. 495-501, September–October 2009.
[4] West D. “AHA wrinkle creams come of age”, Chemical Week, Vol. 166, p. 20, 2004.
[5] Gerling, K.G. “Large scale production of lactobionic acid-use and new applications”, International Dairy Federation, Vol. 9804, pp.251-256, 1998.
[6] Luis-Felipe Gutiérrez, Safia Hamoudi and Khaled Belkacemi “Lactobionic acid: A high value-added lactose derivative for food and pharmaceutical applications”, International Dairy Journal, Vol. 26, Iss. 2, pp. 103-111, October 2012.
[7] Jyrki Kuusisto, Anton V. Tokarev, Elena V. Murzina, Mattias U. Roslund, Jyri-Pekka Mikkola, Dmitry Yu. Murzin and Tapio Salmi “From renewable raw materials to high value-added fine chemicals—Catalytic hydrogenation and oxidation of D-lactose”, Catalysis Today, Vol. 121, Iss. 1-2, pp. 92-99, March 2007.
[8] Byung Y. Yang and Rex Montgomery “Oxidation of lactose with bromine”, Carbohydrate Research, Vol. 340, Iss. 17, pp. 2698-2705, December 2005.
[9] Elena V. Murzina, Anton V. Tokarev, Krisztián Kordás, Hannu Karhu, Jyri-Pekka Mikkola and Dmitry Yu. Murzin “D-Lactose oxidation over gold catalysts”, Catalysis Today, Vol. 131, Iss. 1-4, pp. 385-392, February 2008.
[10] Frank H. Stodola and Lewis B. Lockwood “The oxidation of lactose and maltose to bionic acids by Pseudomonas”, Journal of Biological Chemistry, Vol. 171, pp. 213-221, 1947.
[11] Saúl Alonso, Manuel Rendueles and Mario Díaz “Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions”, Bioresource Technology, Vol. 102, Iss. 20, pp. 9730-9736, October 2011.
[12] Affertsholt T. “Market developments and industry challenges for lactose and lactose derivatives. Presentation at IDF Symposium Lactose and its derivatives”, 2007.
[13] Pedro M.R.Guimarães, José A.Teixeira and Lucília Domingues “Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey”, Biotechnology Advances, Vol. 28, Iss. 3, pp. 375-384, May-June 2010.
[14] P. Jelen “WHEY PROCESSING | Utilization and Products”, Encyclopedia of Dairy Sciences (Second Edition), pp. 731-737, 2011.
[15] F. Pezzotti and M. Therisod “Enzymatic synthesis of aldonic acids”, Carbohydrate Research, Vol. 341, Iss. 13, pp. 2290-2292, September 2006.
[16] Gertjan Schaafsma “Lactose and lactose derivatives as bioactive ingredients in human nutrition”, International Dairy Journal, Vol. 18, Iss. 5, pp. 458-465, May 2008.
[17] Michael G. Gänzle, Gottfried Haase and Paul Jelen “Lactose: Crystallization, hydrolysis and value-added derivatives”, International Dairy Journal, Vol. 18, Iss. 7, pp. 685-694, July 2008.
[18] M.J. Playne and R.G. Crittenden “Galacto-oligosaccharides and Other Products Derived from Lactose”, Advanced Dairy Chemistry, Vol. 3, pp. 121-201, February 2009.
[19] Nobuo Seki and Hitoshi Saito “Lactose as a source for lactulose and other functional lactose derivatives”, International Dairy Journal, Vol. 22, Iss. 2, pp. 110-115, February 2012.
[20] Cécile Bize, Muriel Blanzat and Isabelle Rico-Lattes “Self-Assembled Structures of Catanionic Associations: How to Optimize Vesicle Formation?”, Journal of Surfactants and Detergents, Vol. 13, Iss. 4, pp. 465-473, October 2010.
[21] Florence Lebaupain, Andrés G. Salvay, Blandine Olivier, Grégory Durand, Anne-Sylvie Fabiano, Nicolas Michel, Jean-Luc Popot, Christine Ebel, Cécile Breyton and Bernard Pucci “Lactobionamide Surfactants with Hydrogenated, Perfluorinated or Hemifluorinated Tails:  Physical-Chemical and Biochemical Characterization”, Langmuir, Vol. 22, Iss. 21, pp. 8881-8890, 2006.
[22] Hans Oskarsson, Maud Frankenberg, Annika Annerling and Krister Holmberg “Adsorption of Novel Alkylaminoamide Sugar Surfactants at Tailor-made Surfaces”, Journal of Surfactants and Detergents, Vol. 10, Iss. 1, pp. 41-52, February 2007.
[23] Eun-Mi Kim, Hwan-Jeong Jeong, Se-Lim Kim, Myung-Hee Sohn, Jae-Woon Nah, Hee-Seung Bom, In-Kyu Park and Chong-Su Cho “Asialoglycoprotein-receptor-targeted hepatocyte imaging using 99mTc galactosylated chitosan”, Nuclear Medicine and Biology, Vol. 33, Iss. 4, pp. 529-534, May 2006.
[24] Jiaofeng Peng, Kemin Wang, Weihong Tan, Xiaoxiao He, Chunmei He, Ping Wu and Fang Liu “Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles”, Talanta, Vol. 71, Iss. 2, pp. 833-840, February 2007.
[25] Dietmar Knopp, Dianping Tang and Reinhard Niessner “Review: Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles”, Analytica Chimica Acta, Vol. 647, Iss. 1, pp. 14-30, August 2009.
[26] M. Elizabeth Briden and Barbara A. Green “Topical exfoliation-clinical effects and formulating considerations”, Cosmetic Formulation of Skin Care Products, pp. 237-250, 2006.
[27] Yutaka Hatano, Mao-Qiang Man, Yoshikazu Uchida, Debra Crumrine, Tiffany C. Scharschmidt, Esther G. Kim, Theodora M. Mauro, Kenneth R. Feingold, Peter M. Elias and Walter M. Holleran “Maintenance of an Acidic Stratum Corneum Prevents Emergence of Murine Atopic Dermatitis”, Journal of Investigative Dermatology, Vol. 129, Iss. 7, pp. 1824-1835, July 2009.
[28] Decker A. and Graber E.M. “Over-the-counter acne treatments: A review”, Journal of Clinical and Aesthetic Dermatology, Vol. 5, Iss. 5, pp. 32-40, May 2012.
[29] Barbara Green “After 30 years ... the future of hydroxyacids”, Journal of Cosmetic Dermatology, Vol. 4, Iss. 1, pp. 44-45, January 2005.
[30] Merete Faergemand, Christian Gilleladen and Karsten Bruun Qvist “Method for producing an acidified milk product”, United States Patent Application, Pub. No.: US 20120045546 A1, February 2012.
[31] OE Kenichi and Kimura Takashi “Aging inhibitor for bread”, Japan Patent Application, Pub. No.: JP2011177121, September 2011.
[32] H Druliolle, K.B Kokoh and B Beden “Selective oxidation of lactose to lactobionic acid on lead-adatoms modified platinum electrodes in Na2CO3 + NaHCO3 buffered medium”, Journal of Electroanalytical Chemistry, Vol. 385, Iss. 1, pp. 77-83, March 1995.
[33] Magariello Edward R “Production of lactobionic acid and its δ-lactone”, United States Patent Application, Pub. No.: US 2746916 A, May 1956.
[34] Yah Nan Chia, Michael P. Latusek and Joseph H. Holles “Catalytic Wet Oxidation of Lactose”, Industrial & Engineering Chemistry Research, Vol. 47, Iss. 12, pp. 4049-4055, 2008.
[35] Emil Fischer and Jacob Meyer “Oxydation des Milchzuckers”, Berichte der Deutschen Chemischen Gesellschaft, Vol. 22, Iss. 1, pp. 361-364, January 1889.
[36] M. Papagianni and Murray Moo-Young “Organic acids”, Comprehensive Biotechnology, Vol. 1, pp. 109-120, 2011.
[37] Sarah Baatout, Natalie Leys, Larissa Hendrickx, Annik Dams and Max Mergeay “Physiological changes induced in bacteria following pH stress as a model for space research”, Acta Astronautica, Vol. 60, Iss. 4-7, pp. 451-459, February-April 2007.
[38] Sergios A. Nicolaou, Stefan M. Gaida and Eleftherios T. Papoutsakis “A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation”, Metabolic Engineering, Vol. 12, Iss. 4, pp. 307-331, July 2010.
[39] 許英欽,「探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究」,國立中央大學,碩士論文,民國91年。
[40] Saúl Alonso, Manuel Rendueles and Mario Díaz “Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens”, Bioresource Technology, Vol. 196, pp. 314-323, November 2015.
[41] 沈雍智,「探討麩胺酸的添加對於液態發酵生產松杉靈芝菌多醣體和靈芝酸之研究」,國立中央大學,碩士論文,民國94年。
[42] Kuratsu Y., Sakurai M. and Hagino H. “Aeration-agitation effect on coenzyme Q10 production by Agrobacterium species”, Journal of Fermentation Technology, Vol. 62, Iss. 3, pp. 305-308, 1984.
[43] Saúl Alonso, Manuel Rendueles and Mario Díaz “Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production”, Applied Microbiology and Biotechnology, Vol. 97, Iss. 9, pp. 3843-3854, May 2013.
[44] Saúl Alonso, Manuel Rendueles and Mario Díaz “Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens”, Bioresource Technology, Vol. 109, pp. 140-147, April 2012.
[45] Saúl Alonso, Manuel Rendueles and Mario Díaz “Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens”, Bioresource Technology, Vol. 134, pp. 134-142, April 2013.
[46] 黃俊凱,「探討光照對Saccharomyces cerevisiae生產乙醇之影響」,國立中央大學,碩士論文,民國97年。
[47] 鄭智洋,「探討兩階段式照光發酵槽對Pseudomonas taetrolens發酵乳清生產乳糖酸的影響」,國立中央大學,碩士論文,民國105年。

[48] Yueqiao Liao, Zhen-hua Wei, Linquan Bai and Jian-Jiang Zhong “Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008”, Journal of Biotechnology, Vol. 142, Iss. 3-4, pp. 271-274, 2009.
[49] Chao Peng, He Huang, Xiaojun Ji, Xin Liu, Jiangying You, Jinmiao Lu, Leilei Cong, Xiaokang Xu and Pingkai Ouyang “A temperature-shift strategy for efficient arachidonic acid fermentation by Mortierella alpina in batch culture”, Biochemical Engineering Journal, Vol. 53, Iss. 1, pp. 92-96, 2010.
[50] Raj Mutharasan “Product Formation Kinetics”, Reference source: http://www.gatewaycoalition.org/files/hidden/react/ch4/4_5f.htm
[51] Mark Riley “Engineering of Biological Processes Lecture 4: Production kinetics”, 2007.
[52] Robert Luedeking and Edgar L. Piret “A kinetic study of the lactic acid fermentation. Batch process at controlled pH”, Biotechnology and Bioengineering, Vol. 1, Iss. 4, pp. 393-412, December 1959.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2017-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明