博碩士論文 104324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.144.12.205
姓名 徐瑋呈(Wei-Cheng Syu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 直接電刺激透過鈣離子-攜鈣蛋白依賴性激酶二型活化SMAD蛋白訊號以促進人類牙髓幹細胞骨分化
(Direct Electrical Stimulation Activates SMAD Protein Signaling through Ca2+-Calmodulin-dependent Protein Kinase II to Promote Osteogenesis of Human Dental Pulp Stem Cells)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將人類牙髓幹細胞(human dental pulp stem cells, hDPSCs)培養於導電高分子薄膜表面,並施以直流電,以探討電刺激對於細胞內促進骨分化的機轉。首先利用ELISA分析,發現電刺激不會增加BMP-2蛋白的表現。再來透過有綠色螢光的鈣離子追蹤劑 Fluo-4,發現電刺激會提高胞內鈣離子濃度。接著輔以抑制劑處理來確認鈣離子的來源,發現電壓依賴性鈣離子通道的抑制劑Nifedipine可有效地抑制電刺激對胞內鈣離子的提升。利用西方墨點法分析分析攜鈣蛋白激酶二型(CaMKII)與SMAD1/5&SMAD3的蛋白及其磷酸化表現,發現Nifedipine造成鈣離子濃度下降,會下調CaMKII與SMAD1/5&SMAD3蛋白的磷酸化程度。另外,我們使用CaMKII磷酸化的抑制劑KN-62,並發現對SMAD1/5&SMAD3的磷酸化一樣會有下調控的效果,證實鈣離子是間接透過CaMKII影響SMAD1/5&SMAD3的磷酸化而非直接對SMAD1/5&SMAD3造成影響。最後我們利用茜素紅和鈣沉積法分析在抑制劑存在的情況下電刺激是否能促進骨分化。結果證實相較於沒有施加電刺激的控制組,在有電刺激的組別骨基質增加至1.5倍,但是在加入抑制劑Nifedipine或KN-62的情況下電刺激的促進效果均被顯著地抑制。這些結果證實直接電刺激應該是經由電壓依賴性鈣離子通道增加鈣離子,促使CaMKII的磷酸化,導致SMAD1/5&SMAD3磷酸化的上調,進而透過BMP&TGF-β路徑增進調控轉錄因子的表現以促進細胞骨分化。
摘要(英) In this study, human dental pulp stem cells (hDPSCs) were cultured on conductive polymer films which were treated direct current to explore the mechanism of electrical stimulation (ES) on the promotion of osteogenic differentiation. The results of ELISA analysis indicated that the ES did not increase BMP-2 expression. Next, a green-fluorescent tracer, Fluo-4, was applied to trace calcium ions, and the results suggested that ES increased the levels of intracellular calcium. To confirm the source of increasing calcium, different inhibitors were applied during ES treatment. Nifedipine, a voltage-dependent calcium channel (VDCC) inhibitor, effectively inhibited the improvement of intracellular calcium under ES. Moreover, Western blot analysis was applied to analyze the expressions of calmodulin-dependent protein kinase II (CaMKII) and SMAD1/5&SMAD3 protein and their phosphorylation. The results showed that the reduction of Ca2+ caused by Nifedipine down-regulated the phosphorylations of both CaMKII and SMAD1/5&SMAD3. To confirm that the CaMKII phosphorylation was required for the up-regulation of SMAD1/5&SMAD3 phosphorylation, KN-62, an inhibitor which blocks the combination of CaM and CaMKII, was applied to inhibit CaMKII phosphorylation. Its inhibition resulted in the reduction of SMAD1/5&SMAD3 phosphorylation in ES treated cells, suggesting the SMAD1/5&SMAD3 signal pathway activated by ES was mediated by CaMKII phosphorylation. Finally, these inhibitors were applied to determine their effects on mineralization of ES-treated cells, which were evaluated by Alizarin Red staining and Ca-OCPC complex method. The mineralization of ES treated cells was 1.5 times that of the untreated cells when there was no inhibitor. However, this improvement was significantly reduced as the cells were treated Nifedipine or KN62. These results suggesting that ES should increase intracellular Ca2+ via VDCC to promote phosphorylation of CaMKII, which leads to up-regulation of SMAD1/5&SMAD3 phosphorylation and further enhances the expression of transcription factors through the BMP pathway and eventually facilitate cell differentiation.
關鍵字(中) ★ 電刺激 關鍵字(英)
論文目次 致謝III
摘要 I
Abstract II
目錄III
表目錄VIII
圖目錄 IX
第一章 緒論 1
1.1 研究動機1
1.2 實驗目的4
第二章 文獻回顧與理論基礎 5
2.1 組織工程5
2.2 幹細胞7
2.2.1 牙髓間質幹細胞 9
2.3 骨分化過程11
2.3.1 SMAD 蛋白家族 (SMAD protein family) 13
2.4 電刺激15
2.4.1 電刺激對細胞之作用 17
2.4.2 電刺激對細胞骨質生成之作用18
2.5 鈣離子訊號傳導19
2.5.1 細胞內鈣離子之作用 19
2.5.2 鈣離子通道(Calcium Channels)20
2.5.3 鈣訊號傳導與骨分化之關係23
第三章 實驗材料與方法 27
3.1 實驗藥品27
3.1.1 導電材料製備藥品 27
3.1.2 細胞培養、骨分化用藥27
3.1.3 骨分化定性、定量試劑28
3.1.4 BMP-2 ELISA Kit 試劑29
3.1.5 Fluo-4-AM 鈣離子監控試劑29
3.1.6 鈣訊號傳導相關蛋白抑制劑29
3.1.7 蛋白質萃取、定量、定性試劑30
3.1.8 免疫螢光染色試劑 31
3.2 實驗儀器32
3.3 試藥製備與實驗方法33
3.3.1 Polypyrrole film 與電刺激裝置製備33
3.3.2 細胞繼代培養與冷凍、解凍34
3.3.3 骨分化培養液配方 (Osteogenesis medium)36
3.3.4 BMP-2 ELISA 定量分析 37
3.3.5 Fluo-4-AM 鈣離子監控分析39
3.3.6 蛋白質收樣與定量分析40
3.3.7 蛋白質膠體電泳(SDS-PAGE)41
3.3.8 西方墨點分析法 (Western Blot analysis)44
3.3.9 免疫螢光染色法 48
3.3.10 茜素紅染色定性分析 (Alizarin Red Staining) 51
3.3.11 Calcium-O-Cresophtalein Complexone 定量分析52
3.4 實驗架構設計55
3.4.1 電刺激對骨型態發生蛋白的影響57
3.4.2 電刺激對細胞內鈣離子調控作用58
3.4.3 電刺激下鈣調控對蛋白質分子機制的影響59
3.4.4 電刺激下鈣調控對細胞骨分化的影響60
第四章 結果與討論 61
4.1 電刺激對骨型態發生蛋白的影響 61
4.1.1 BMP-2 蛋白定量分析 61
4.2 電刺激對細胞內鈣調控之影響 62
4.2.1 細胞內鈣離子的監控 62
4.2.2 電刺激對鈣調控相關蛋白之影響64
4.3 電刺激下抑制劑對鈣調控之影響 66
4.3.1 電刺激下鈣離子增加之來源66
4.3.2 電刺激下抑制劑對鈣相關蛋白之影響68
4.3.3 鈣調控對 SMAD1/5&SMAD2/3 蛋白之影響70
4.3.4 SMAD1/5&3 蛋白磷酸化之移位 76
4.4 電刺激下鈣調控對細胞骨分化的影響 81
4.4.1 茜素紅染色定性分析 81
4.4.2 鈣離子沉積定量分析 83
第五章 結論 85
參考文獻89
參考文獻 1. AG, V. K.; Javvadi, S., Facial Bone Fractures in Road Traffic Accident: A Post Mortem Study. Medico-Legal Update 2016, 16 (2).
2. Marsell, R.; Einhorn, T. A., The biology of fracture healing. Injury 2011, 42 (6), 551-5.
3. Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A., Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of cellular biochemistry 2003, 88 (5), 873-84.
4. Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26 (27), 5474-91.
5. Hutmacher, D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21 (24), 2529-43.
6. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S., SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (10), 5807-5812.
7. Seo, B. M.; Miura, M.; Gronthos, S.; Bartold, P. M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P. G.; Wang, C. Y.; Shi, S., Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 2004, 364 (9429), 149-55.
8. Huang, G. T.; Sonoyama, W.; Liu, Y.; Liu, H.; Wang, S.; Shi, S., The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of endodontics 2008, 34 (6), 645-51.
9. Laino, G.; Carinci, F.; Graziano, A.; d′Aquino, R.; Lanza, V.; De Rosa, A.; Gombos, F.; Caruso, F.; Guida, L.; Rullo, R.; Menditti, D.; Papaccio, G., In vitro bone production using stem cells derived from human dental pulp. Journal of Craniofacial Surgery 2006, 17 (3), 511-5.
10. Nakashima, M.; Akamine, A., The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics 2005, 31 (10), 711-8.
11. Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A. L.; Karsenty, G., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997, 89 (5), 747-54.
12. Altman, G. H.; Horan, R. L.; Martin, I.; Farhadi, J.; Stark, P. R.; Volloch, V.; Richmond, J. C.; Vunjak-Novakovic, G.; Kaplan, D. L., Cell differentiation by mechanical stress. The FASEB Journal 2002, 16 (2), 270-2.
13. Suzuki, N.; Yoshimura, Y.; Deyama, Y.; Suzuki, K.; Kitagawa, Y., Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. International journal of molecular medicine 2008, 21 (3), 291-6.
14. Kearney, E. M.; Farrell, E.; Prendergast, P. J.; Campbell, V. A., Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Annals of biomedical engineering 2010, 38 (5), 1767-79.
15. Della Rocca, G. J., The science of ultrasound therapy for fracture healing. Indian Journal of Orthopaedics 2009, 43 (2), 121-6.
16. Sim, W. Y.; Park, S. W.; Park, S. H.; Min, B. H.; Park, S. R.; Yang, S. S., A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab on a chip 2007, 7 (12), 1775-82.
17. Henstock, J. R.; Rotherham, M.; Rose, J. B.; El Haj, A. J., Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone 2013, 53 (2), 468-77.
18. Ruff, C.; Holt, B.; Trinkaus, E., Who′s afraid of the big bad Wolff?: ”Wolff′s law” and bone functional adaptation. American journal of physical anthropology 2006, 129 (4), 484-98.
19. Frost, H. M., From Wolff′s law to the Utah paradigm: insights about bone physiology and its clinical applications. The Anatomical record 2001, 262 (4), 398-419.
20. Fukada, E.; Yasuda, I., On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan 1957, 12 (10), 1158-1162.
21. Rubinacci, A.; Black, J.; Brighton, C. T.; Friedenberg, Z. B., Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. Journal of Orthopaedic Research 1988, 6 (3), 335-45.
22. The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from J. Kyoto Med. Soc., 4:395-406, 1953. Clinical orthopaedics and related research 1977, (124), 5-8.
23. Spadaro, J. A., Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics 1997, 18 (3), 193-202.
24. Bassett, C. A.; Becker, R. O., Generation of electric potentials by bone in response to mechanical stress. Science (New York, N.Y.) 1962, 137 (3535), 1063-4.
25. Bassett, C. A. L.; Pawluk, R. J.; Becker, R. O., Effects of Electric Currents on Bone In Vivo. Nature 1964, 204 (4959), 652-654.
26. Kuzyk, P. R. T.; Schemitsch, E. H., The science of electrical stimulation therapy for fracture healing. Indian Journal of Orthopaedics 2009, 43 (2), 127-131.
27. Yasuda, I., Electrical callus and callus formation by electret. Clinical orthopaedics and related research 1977, (124), 53-6.
28. Zhai, M.; Jing, D.; Tong, S.; Wu, Y.; Wang, P.; Zeng, Z.; Shen, G.; Wang, X.; Xu, Q.; Luo, E., Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics 2016.
29. Ongaro, A.; Pellati, A.; Bagheri, L.; Fortini, C.; Setti, S.; De Mattei, M., Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 2014, 35 (6), 426-36.
30. Kim, H. J.; Jung, J.; Park, J. H.; Kim, J. H.; Ko, K. N.; Kim, C. W., Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Experimental Biology and Medicine 2013, 238 (8), 923-31.
31. Gittens, R. A.; Olivares-Navarrete, R.; Rettew, R.; Butera, R. J.; Alamgir, F. M.; Boyan, B. D.; Schwartz, Z., Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation. Bioelectromagnetics 2013, 34 (8), 599-612.
32. Park, H.; Bhalla, R.; Saigal, R.; Radisic, M.; Watson, N.; Langer, R.; Vunjak-Novakovic, G., Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine. 2008, 2 (5), 279-87.
33. Mie, M.; Endoh, T.; Yanagida, Y.; Kobatake, E.; Aizawa, M., Induction of neural differentiation by electrically stimulated gene expression of NeuroD2. Journal of biotechnology 2003, 100 (3), 231-8.
34. 郭弘偉; Guo, H. W. 直接電刺激對於人類牙髓幹細胞在骨分化過程中基因調控與分化能力影響之研究;The Effects of Direct Electrical Stimulation on Gene Regulation and Differentiation of Human Dental Pulp Stem Cells During Osteogenesis Process. 國立中央大學.
35. 陳昱君; Chen, Y. J. 人類牙髓幹細胞在直接電刺激其細胞週期與骨分化之關聯性;The Relationship between Cell Cycle and Osteogenesis of Human Dental Pulp Stem Cells under Direct Electrical Stimulation. 國立中央大學.
36. Wang, Q.; Zhong, S.; Ouyang, J., Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clinical orthopaedics and related research 1998, 348, 259-268.
37. Eapen, A.; Kulkarni, R.; Ravindran, S.; Ramachandran, A.; Sundivakkam, P.; Tiruppathi, C.; George, A., Dentin phosphophoryn activates Smad protein signaling through Ca2+-calmodulin-dependent protein kinase II in undifferentiated mesenchymal cells. The Journal of biological chemistry 2013, 288 (12), 8585-95.
38. Roh, M. R.; Jung, J. Y.; Chung, K. Y., Autologous fat transplantation for depressed linear scleroderma-induced facial atrophic scars. Dermatologic Surgery 2008, 34 (12), 1659-65.
39. Zienowicz, R. J.; Karacaoglu, E., Implant-based breast reconstruction with allograft. Plastic and reconstructive surgery 2007, 120 (2), 373-81.
40. Ifukube, T., Artificial organs: recent progress in artificial hearing and vision. The Journal of Artificial Organs 2009, 12 (1), 8-10.
41. Langer, R.; Vacanti, J. P., Tissue engineering. Science (New York, N.Y.) 1993, 260 (5110), 920-6.
42. Lutolf, M. P.; Hubbell, J. A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology 2005, 23 (1), 47-55.
43. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering Part A 2001, 7 (2), 211-28.
44. Murphy, C. M.; O′Brien, F. J.; Little, D. G.; Schindeler, A., Cell-scaffold interactions in the bone tissue engineering triad. European cells & materials 2013, 26, 120-32.
45. Watabe, T.; Miyazono, K., Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell research 2009, 19 (1), 103-15.
46. EuroStemCell. https://www.slideshare.net/eurostemcell/introducing-stemcellsfinal-jan2012.
47. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 1998, 282 (5391), 1145-7.
48. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.) 1999, 284 (5411), 143-7.
49. Aggarwal, S.; Pittenger, M. F., Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105 (4), 1815-22.
50. TICIBA. https://ticeba.wordpress.com/tag/bone-marrow/.
51. Petersen, B. E.; Bowen, W. C.; Patrene, K. D.; Mars, W. M.; Sullivan, A. K.; Murase, N.; Boggs, S. S.; Greenberger, J. S.; Goff, J. P., Bone marrow as a potential source of hepatic oval cells. Science (New York, N.Y.) 1999, 284 (5417), 1168-70.
52. Erices, A.; Conget, P.; Minguell, J. J., Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology 2000, 109 (1), 235-42.
53. Kern, S.; Eichler, H.; Stoeve, J.; Kluter, H.; Bieback, K., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells (Dayton, Ohio) 2006, 24 (5), 1294-301.
54. Zuk, P. A.; Zhu, M.; Ashjian, P.; De Ugarte, D. A.; Huang, J. I.; Mizuno, H.; Alfonso, Z. C.; Fraser, J. K.; Benhaim, P.; Hedrick, M. H., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 2002, 13 (12), 4279-95.
55. Ren, H.; Sang, Y.; Zhang, F.; Liu, Z.; Qi, N.; Chen, Y., Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy. Stem Cells International 2016, 2016, 13.
56. Gay, I. C.; Chen, S.; MacDougall, M., Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics & craniofacial research 2007, 10 (3), 149-60.
57. Sloan, A. J.; Smith, A. J., Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral diseases 2007, 13 (2), 151-7.
58. Laino, G.; d′Aquino, R.; Graziano, A.; Lanza, V.; Carinci, F.; Naro, F.; Pirozzi, G.; Papaccio, G., A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of bone and mineral research 2005, 20 (8), 1394-402.
59. Prescott, R. S.; Alsanea, R.; Fayad, M. I.; Johnson, B. R.; Wenckus, C. S.; Hao, J.; John, A. S.; George, A., In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. Journal of endodontics 2008, 34 (4), 421-6.
60. Bruder, S. P.; Jaiswal, N.; Ricalton, N. S.; Mosca, J. D.; Kraus, K. H.; Kadiyala, S., Mesenchymal stem cells in osteobiology and applied bone regeneration. Clinical orthopaedics and related research 1998, (355 Suppl), S247-56.
61. Gronthos, S.; Brahim, J.; Li, W.; Fisher, L. W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P. G.; Shi, S., Stem cell properties of human dental pulp stem cells. Journal of dental research 2002, 81 (8), 531-5.
62. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P. G.; Shi, S., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (25), 13625-30.
63. Huang, G. T.; Gronthos, S.; Shi, S., Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of dental research 2009, 88 (9), 792-806.
64. Bakopoulou, A.; Leyhausen, G.; Volk, J.; Tsiftsoglou, A.; Garefis, P.; Koidis, P.; Geurtsen, W., Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of oral biology 2011, 56 (7), 709-21.
65. Stein, G. S.; Lian, J. B.; Stein, J. L.; Van Wijnen, A. J.; Montecino, M., Transcriptional control of osteoblast growth and differentiation. Physiological reviews 1996, 76 (2), 593-629.
66. Derynck, R.; Zhang, Y.; Feng, X. H., Smads: transcriptional activators of TGF-beta responses. Cell 1998, 95 (6), 737-40.
67. Massague, J.; Seoane, J.; Wotton, D., Smad transcription factors. Genes & development 2005, 19 (23), 2783-810.
68. Wu, J. W.; Hu, M.; Chai, J.; Seoane, J.; Huse, M.; Li, C.; Rigotti, D. J.; Kyin, S.; Muir, T. W.; Fairman, R.; Massague, J.; Shi, Y., Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Molecular cell 2001, 8 (6), 1277-89.
69. Shi, Y.; Hata, A.; Lo, R. S.; Massague, J.; Pavletich, N. P., A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997, 388 (6637), 87-93.
70. Itoh, F.; Asao, H.; Sugamura, K.; Heldin, C. H.; ten Dijke, P.; Itoh, S., Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. The EMBO journal 2001, 20 (15), 4132-42.
71. Chen, G.; Deng, C.; Li, Y. P., TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International journal of biological sciences 2012, 8 (2), 272-88.
72. Wiesmann, H.; Hartig, M.; Stratmann, U.; Meyer, U.; Joos, U., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et biophysica acta 2001, 1538 (1), 28-37.
73. Tsai, M. T.; Li, W. J.; Tuan, R. S.; Chang, W. H., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research 2009, 27 (9), 1169-74.
74. Shi, G.; Rouabhia, M.; Meng, S.; Zhang, Z., Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A 2008, 84 (4), 1026-37.
75. Fini, M.; Giavaresi, G.; Carpi, A.; Nicolini, A.; Setti, S.; Giardino, R., Effects of pulsed electromagnetic fields on articular hyaline cartilage: review of experimental and clinical studies. Biomedicine & Pharmacotherapy 2005, 59 (7), 388-94.
76. Forciniti, L.; Ybarra, J., 3rd; Zaman, M. H.; Schmidt, C. E., Schwann cell response on polypyrrole substrates upon electrical stimulation. Acta biomaterialia 2014, 10 (6), 2423-33.
77. Mayer, L. D.; Wong, K. F.; Menon, K.; Chong, C.; Harrigan, P. R.; Cullis, P. R., Influence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles. Biochemistry 1988, 27 (6), 2053-60.
78. Xiong, G. M.; Do, A. T.; Wang, J. K.; Yeoh, C. L.; Yeo, K. S.; Choong, C., Development of a miniaturized stimulation device for electrical stimulation of cells. Journal of Biological Engineering 2015, 9 (1), 14.
79. Yuan, X.; Arkonac, D. E.; Chao, P. H.; Vunjak-Novakovic, G., Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific reports 2014, 4, 3674.
80. Hashimoto, S.; Sato, F.; Uemura, R.; Nakajima, A., Effect of Pulsatile Electric Field on Cultured Muscle Cells in Vitro. Journal of Systemics Cybernetics and Informatics 2012, 10 (1), 1-6.
81. Yan, Z.; Yang, G.; Cui, L.; He, X.; Kuang, W.; Wu, W.; Liu, X.; Li, L., [Effects of electrical stimulation on the differentiation of mesenchymal stem cells into cardiomyocyte-like cells]. Journal of biomedical engineering 2013, 30 (3), 556-61.
82. Liu, X.; Gilmore, K. J.; Moulton, S. E.; Wallace, G. G., Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. Journal of neural engineering 2009, 6 (6), 065002.
83. Mobini, S.; Leppik, L.; Thottakkattumana Parameswaran, V.; Barker, J. H., In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 2017, 5, e2821.
84. Tsai, M. T.; Li, W. J., Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research 2009, 27 (9), 1169-1174.
85. Kim, I.; Song, J.; Song, Y.; Cho, T., Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Engineering Part A 2009, 15 (9), 2411-2422.
86. Wang, Z.; Clark, C. C.; Brighton, C. T., Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. The Journal of bone and joint surgery. American volume 2006, 88 (5), 1053-65.
87. Zhuang, H.; Wang, W.; Seldes, R. M.; Tahernia, A. D.; Fan, H.; Brighton, C. T., Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and biophysical research communications 1997, 237 (2), 225-9.
88. G., S. S., Advanced Nutrition & Human Metabolism 4th edition. 2003.
89. Brini, M.; Ottolini, D.; Calì, T.; Carafoli, E., Calcium in health and disease. In Interrelations between Essential Metal Ions and Human Diseases, Springer: 2013; pp 81-137.
90. Catterall, W. A., Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology 2011, 3 (8), a003947.
91. Wen, L.; Wang, Y.; Wang, H., L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications
2012, 424 (3), 439-445.
92. Mikoshiba, K.; Hattori, M., IP3 receptor-operated calcium entry. Science Signaling 2000, 2000, E1.
93. Birnbaumer, L., The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annual review of pharmacology and toxicology 2009, 49, 395-426.
94. Sutko, J. L.; Airey, J. A., Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiological reviews 1996, 76 (4), 1027-71.
95. Hoth, M.; Penner, R., Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992, 355 (6358), 353.
96. Miura, Y.; Henquin, J. C.; Gilon, P., Emptying of Intracellular Ca2+ Stores Stimulates Ca2+ Entry in Mouse Pancreatic β‐Cells by Both Direct and Indirect Mechanisms. The Journal of Physiology 1997, 503 (2), 387-398.
97. Pall, M. L., Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. Journal of cellular and molecular medicine 2013, 17 (8), 958-65.
98. Landsberg, J. W.; Yuan, J. X., Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. Physiology 2004, 19 (2), 44-50.
99. Lisman, J., The CaM kinase II hypothesis for the storage of synaptic memory. Trends in neurosciences 1994, 17 (10), 406-412.
100. pathway., T. C. https://lsresearch.thomsonreuters.com/maps/409/.
101. Siddappa, R.; Martens, A.; Doorn, J.; Leusink, A.; Olivo, C.; Licht, R.; van Rijn, L.; Gaspar, C.; Fodde, R.; Janssen, F.; van Blitterswijk, C.; de Boer, J., cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proceedings of the National Academy of Sciences of the United States of America
2008, 105 (20), 7281-6.
102. Drugs.com. Nifedipine. https://www.drugs.com/monograph/nifedipine.html.
103. Macmillan, D.; McCarron, J., The phospholipase C inhibitor U‐73122 inhibits Ca2+ release from the intracellular sarcoplasmic reticulum Ca2+ store by inhibiting Ca2+ pumps in smooth muscle. British journal of pharmacology 2010, 160 (6), 1295-1301.
104. Uysal, T.; Ustdal, A.; Sonmez, M. F.; Ozturk, F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. The Angle orthodontist 2009, 79 (5), 984-90.
105. Nakashima, M.; Reddi, A. H., The application of bone morphogenetic proteins to dental tissue engineering. Nature biotechnology 2003, 21 (9), 1025-1032.
106. Liu, T.; Gao, Y.; Sakamoto, K.; Minamizato, T.; Furukawa, K.; Tsukazaki, T.; Shibata, Y.; Bessho, K.; Komori, T.; Yamaguchi, A., BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. Journal of cellular physiology 2007, 211 (3), 728-35.
107. Xia, M.; Imredy, J.; Koblan, K.; Bennett, P.; Connolly, T., State-dependent inhibition of L-type calcium channels: cell-based assay in high-throughput format. Analytical biochemistry 2004, 327 (1), 74-81.
108. Wu, L.; Bauer, C. S.; Zhen, X. G.; Xie, C.; Yang, J., Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 2002, 419 (6910), 947-52.
109. Okazaki, K.; Ishikawa, T.; Inui, M.; Tada, M.; Goshima, K.; Okamoto, T.; Hidaka, H., KN-62, a specific Ca++/calmodulin-dependent protein kinase inhibitor, reversibly depresses the rate of beating of cultured fetal mouse cardiac myocytes. Journal of Pharmacology and Experimental Therapeutics 1994, 270 (3), 1319-24.
110. Hu, W. W.; Hsu, Y. T.; Cheng, Y. C., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering C 2014, 37, 28-36.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明