博碩士論文 103324602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.135.190.244
姓名 娜瑪妲(Narmatha Koothan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Preparation and characterization of processed sulfated zirconia catalysts)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
使用基於N2 吸附 - 解吸等溫線的特徵技術,XRD,TGA,FTIR,BET 和孔徑分析來分析硫酸化氧化鋯。在這項研究中,硫酸化氧化鋯催化劑由純氧化鋯製備,有兩種方法。一種是煅燒前的硫化(SBC),另一種是煅燒後的硫化(SAC)。以我們實驗室的水熱法製備純氧化鋯作為起始原料。在這兩種情況下,硫化劑為硫酸(H2SO4),煅燒溫度為500℃。然而,測試了10℃/分鐘和5℃/分鐘之間的加熱速率的變化。從兩種不同方法得到的硫酸化氧化鋯的表面積為130-160m2 / g,介孔結構。通過XRD 和TGA 分析,證明通過煅燒500℃可以實現四方硫酸化氧化鋯,並通過FTIR 證實四方相的穩定性達到700℃。通過NaOH 滴定,正丁胺滴定以及氨-TPD 研究測量催化劑的酸度。發現製備的硫酸化氧化鋯具有對應於三種不同類型解吸峰的弱至高酸性位點。
摘要(英) The characteristic techniques, XRD, TGA, FTIR, BET and pore size analysis based on N2 adsorption-desorption isotherm were used to analyze the sulfated zirconia. In this study, sulfated zirconia catalyst was prepared from pure zirconia in two methods. One is Sulfurization before calcination (SBC), and the other one is sulfurization after calcination (SAC). The pure zirconia which we took as a starting material was prepared by the hydrothermal method in our laboratory. In both cases, the sulfurization agent was sulfuric acid (H2SO4), and the calcination temperature was 500oC. However, the variation of the heating rate between 10oC/min and 5oC/min were tested. The obtained sulfated zirconia from the two different methods has the surface area ranging from 130-160 m2/g with mesoporous structure. From the XRD and TGA analysis, it was proven that the tetragonal sulfated zirconia could be achieved by calcining for 500℃ and the stability of the tetragonal phase up to 700℃ was proven by FTIR. The acidity of the catalyst was measured by NaOH titration, n-butylamine titration, as well as by the ammonia-TPD study. It was found out that the prepared sulfated zirconia have weak to high acid sites corresponding to three different types of desorption peaks.
關鍵字(中) ★ sulfated zirconia 關鍵字(英)
論文目次 1 Introduction 1
1-1 Zirconia 1
1-2 Sulfated zirconia 4
1-3 Literature review 7
1-4 Objective 11
2 Synthesis of Zirconia nanocrystal and the preparation of sulfated zirconia therefrom 12
2-1 Materials 12
2-2 Experimental Section 12
2-3 Methods of characterization 19
3 Results and discussions 24
3-1 XRD 24
3-2 TGA 28
3-3 FTIR 30
3-4 Surface area measurement (BET) 33
3-5 Titration methods 35
3-6 NH3-TPD study 37
4 Conclusions 43
5 References 44
參考文獻 1. Song, X. and A. Sayari, Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catalysis Reviews, 1996. 38(3): p. 329-412.
2. Finnis, M., et al., Crystal structures of zirconia from first principles and self-consistent tight binding. Physical review letters, 1998. 81(23): p. 5149.
3. Smith, D.K. and W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallographica, 1965. 18(6): p. 983-991.
4. McCullough, J.t. and K. Trueblood, The crystal structure of baddeleyite (monoclinic ZrO2). Acta Crystallographica, 1959. 12(7): p. 507-511.
5. Teufer, G., The crystal structure of tetragonal ZrO2. Acta Crystallographica, 1962. 15(11): p. 1187-1187.
6. Goldschmidt, H., Selected applications of high-temperature x-ray studies in the metallurgical field. Advanced. X-Ray Analysis, 1962. 5.
7. Norman, C., P. Goulding, and I. McAlpine, Role of anions in the surface area stabilisation of zirconia. Catalysis today, 1994. 20(2): p. 313-321.
8. Norman, C., P. Goulding, and P. Moles, 3.4 The Role of Sulphate in the Stabilisation of Zirconia. Studies in Surface Science and Catalysis, 1994. 90: p. 269-272.
9. Davis, B.H., R.A. Keogh, and R. Srinivasan, Sulfated zirconia as a hydrocarbon conversion catalyst. Catalysis Today, 1994. 20(2): p. 219-256. 10. Matsuzawa, Kenji. ”Solid acid catalyst and process for preparing the same.” U.S. Patent No. 6,326,328. 4 Dec. 2001.
11. Yadav, G.D. and J.J. Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials, 1999. 33(1–3): p. 1-48.
12. Corma, A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995. 95(3): p. 559-614.
13. X. Song, S. and R. A. Kydd, Activation of sulfated zirconia catalysts Effect of water content on their activity in n-butane isomerization. Journal of the Chemical Society, Faraday Transactions, 1998. 94(9): p. 1333-1338.
14. Fărcaşiu, D. and J.Q. Li, Preparation of sulfated zirconia catalysts with improved control of sulfur content, III. Effect of conditions of catalyst synthesis on physical properties and catalytic activity12. Applied Catalysis A: General, 1998. 175(1–2): p. 1-9.
15. Almustapha, M., M. Farooq, and J.M. Andresen, Sulphated zirconia catalysed conversion of high density polyethylene to value-added products using a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, 2017.
16. Fa˛rcas¸iu, D., J.Q. Li, and S. Cameron, Preparation of sulfated zirconia catalysts with improved control of sulfur content II. Effect of sulfur content on physical properties and catalytic activity. Applied Catalysis A: General, 1997. 154(1): p. 173-184.
17. Roy, B., M. Rahman, and M. Rahman, Measurement of surface acidity of amorphous silica-alumina catalyst by amine titration method. Journal of Applied Sciences, 2005. 5: p. 1275-1278.
45
18. Deeba, M. and W.K. Hall, The Measurement of Catalyst Acidity II: Chemisorption Studies. Zeitschrift für Physikalische Chemie, 1985. 144(144): p. 85-103.
19. Cardona-Martinez, N. and J. Dumesic, Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Advances in catalysis, 1992. 38: p. 149-244.
20. Solinas, V. and I. Ferino, Microcalorimetric characterisation of acid–basic catalysts. Catalysis today, 1998. 41(1): p. 179-189.
21. Parida, K.M., S.K. Samantaray, and H.K. Mishra, SO2−4/TiO2–SiO2 Mixed Oxide Catalyst, I: Synthesis, Characterization, and Acidic Properties. Journal of Colloid and Interface Science, 1999. 216(1): p. 127-133.
22. Morterra, C. and G. Cerrato, Titrating surface acidity of sulfated zirconia catalysts: is the adsorption of pyridine a suitable probe? Physical Chemistry Chemical Physics, 1999. 1(11): p. 2825-2831.
23. Mortland, M. and K. Raman, Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays and Clay Minerals, 1968. 16(5): p. 393-398.
24. Brown, D. and C. Rhodes, Brønsted and Lewis acid catalysis with ion-exchanged clays. Catalysis Letters, 1997. 45(1): p. 35-40.
25. Parry, E., An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963. 2(5): p. 371-379.
26. Basila, M.R., T.R. Kantner, and K.H. Rhee, The Nature of the Acidic Sites on a Silica-Alumina. Characterization by Infrared Spectroscopic Studies of Trimethylamine and Pyridine Chemisorption1. The Journal of Physical Chemistry, 1964. 68(11): p. 3197-3207.
27. Morimoto, T., J. Imai, and M. Nagao, Infrared spectra of butylamine adsorbed on silica-alumina. The Journal of Physical Chemistry, 1974. 78(7): p. 704-708.
28. Miyata, H., K. Fujii, and T. Ono, Acidic properties of vanadium oxide on titania. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988. 84(9): p. 3121-3128.
29. Blanco, C., et al., Infrared studies of surface acidity and reversible folding in palygorskite. Clays and Clay Minerals, 1988. 36(4): p. 364-368.
30. Coster, D., A. Blumenfeld, and J. Fripiat, Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study. The Journal of Physical Chemistry, 1994. 98(24): p. 6201-6211.
31. Brown, D. and C. Rhodes, A new technique for measuring surface acidity by ammonia adsorption. Thermochimica acta, 1997. 294(1): p. 33-37.
32. Richter, M., et al., A new method for the quantitative determination of zeolitic Brønsted acidity. Chemical Communications, 1997(4): p. 383-384.
33. Benesi, H., Acidity of catalyst surfaces. II. Amine titration using Hammett indicators. The Journal of Physical Chemistry, 1957. 61(7): p. 970-973.
34. Johnson, O., Acidity and polymerization activity of solid acid catalysts. The Journal of Physical Chemistry, 1955. 59(9): p. 827-831.
35. Henmi, T. and K. Wada, Surface acidity of imogolite and allophane. Clays and Clay Minerals, 1974. 10: p. 231-245.
36. Kapoor, B., Weathering of micaceous clays in some Norwegian podzols. Clays and Clay Minerals, 1972. 9(4): p. 383-394.
37. Loeppert, R., L. Zelazny, and B. Volk, Acidic properties of kaolinite in water and acetonitrile. Soil Science Society of American Journal, 1977. 41(6): p. 1101-1106.
46
38. Arata, K. and M. Hino, Reaction of butane to isobutane catalyzed by the solid superacid of HfO2 treated with sulfate ion. Reaction Kinetics and Catalysis Letters, 1984. 25(1): p. 143-145.
39. Arata, K. and M. Hino, Solid catalyst treated with anion. Applied Catalysis, 1990. 59(1): p. 197-204.
40. Hino, M. and K. Arata, Iron oxide as an effective catalyst for the polycondensation of benzyl chloride, the formation of para-substituted polybenzyl. Chemistry Letters, 1979. 8(9): p. 1141-1144. 41. Hino, Makoto, and Kazushi Arata. ”Synthesis of solid superacid catalyst with acid strength of H 0⩽–16.04.” Journal of the Chemical Society, Chemical Communications 18 (1980): 851-852. 42. Hino, Makoto, and Kazushi Arata. ”Acylation of toluene with acetic and benzoic acids catalysed by a solid superacid in a heterogeneous system.” Journal of the Chemical Society, Chemical Communications 3 (1985): 112-113.
43. Hino, M., S. Kobayashi, and K. Arata, Solid catalyst treated with anion. 2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. Journal of the American Chemical Society, 1979. 101(21): p. 6439-6441.
44. Hino, Makoto, and Kazushi Arata. ”Catalytic activity of iron oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether.” Chemistry Letters 8.5 (1979): 477-480.
45. Hino, Makoto, and Kazushi Arata. ”Reaction of butane to isobutane catalyzed by iron oxide treated with sulfate ion. Solid superacid catalyst.” Chemistry Letters 8.10 (1979): 1259-1260.
46. Adeeva, V., G.D. Lei, and W.M.H. Sachtler, Isomenzation of13C labeled butane over Fe,Mn promoted sulfated ZrO2 catalyst. Applied Catalysis A: General, 1994. 118(1): p. L11-L15.
47. Iglesia, E., S.L. Soled, and G.M. Kramer, Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species. Journal of Catalysis, 1993. 144(1): p. 238-253.
48. Arata, K., Solid Superacids. Advances in Catalysis, 1990. 37: p. 165-211.
49. Arata, K., Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds. Green Chemistry, 2009. 11(11): p. 1719-1728. 50. Nascimento, P., C. Akratopoulou, M. Oszagyan, G. Coudurier, C. Travers, J. F. Joly, and J. C. Vedrine, ZrO2-SO42-Catalysts. Nature and Stability of Acid Sites Responsible for n-Butane Isomerization, in Studies in Surface Science and Catalysis, F.S. L. Guczi and T. P, Editors. 1993, Elsevier. p. 1185-1197.
51. Abdollahi-Alibeik, M. and M. Hajihakimi, Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles. Chemical Papers, 2013. 67(5): p. 490-496.
52. Faˇrcas¸iu, D. and J.Q. Li, Preparation of sulfated zirconia catalysts with improved control of sulfur content. Applied Catalysis A: General, 1995. 128(1): p. 97-105.
53. Sun Yinyong, Sulfated zirconia supported in mesoporous materials. Applied Catalysis A: General, 2002. 237(1–2): p. 21-31.
47
54. Manoli and Jean-Marie, Evolution of the Catalytic Activity in Pt/Sulfated Zirconia Catalysts: Structure, Composition, and Catalytic Properties of the Catalyst Precursor and the Calcined Catalyst. Journal of Catalysis, 1998. 178(1): p. 338-351.
55. Parvulescu, V., Coman, S., Grange, P., & Parvulescu, V. I. (1999). Preparation and characterization of sulfated zirconia catalysts obtained via various procedures. Applied Catalysis A: General, 176(1), 27-43. 56. Matsuhashi, Hiromi, Hideo Nakamura, Tatsumi Ishihara, Shinji Iwamoto, Yuichi Kamiya, Junya Kobayashi, Yoshihiro Kubota , Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009. 360(1): p. 89-97.
57. Heshmatpour, F. and R.B. Aghakhanpour, Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol–gel route. Advanced Powder Technology, 2012. 23(1): p. 80-87. 58. Yu, Shengjian, Pingping Jiang, Yuming Dong, Pingbo Zhang, Yue Zhang, and Weijie Zhang, Hydrothermal synthesis of nanosized sulfated zirconia as an efficient and reusable catalyst for esterification of acetic acid with n-butanol. Bulletin of the Korean Chemical Society, 2012. 33(2): p. 524-528. 59. Rezaei, M., S. M. Alavi, S. Sahebdelfar, and Zi-Feng Yan,Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure. Powder technology, 2006. 168(2): p. 59-63.
60. Stichert, W. and F. Schüth, Synthesis of Catalytically Active High Surface Area Monoclinic Sulfated Zirconia. Journal of Catalysis, 1998. 174(2): p. 242-245. 61. Stichert, W., F. Schüth, S. Kuba, and H. Knözinger, Monoclinic and Tetragonal High Surface Area Sulfated Zirconias in Butane Isomerization: CO Adsorption and Catalytic Results. Journal of Catalysis, 2001. 198(2): p. 277-285. 62. Nayebzadeh, H., N. Saghatoleslami, A. Maskooki, and B. R. Vahid, Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid. Chemical and Biochemical Engineering Quarterly, 2014. 28(3): p. 259-265.
63. Shiaw-Tseh Chiang, A., The Production of Dispersible Zirconia Nanocrystals: A Recent Patent Review. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering), 2014. 7(2): p. 76-95. 64. Sun, Wendong, Liping Xu, Ying Chu, and Wei Shi, Controllable synthesis, characterization and catalytic properties of WO 3/ZrO 2 mixed oxides nanoparticles. Journal of colloid and interface science, 2003. 266(1): p. 99-106. 65. Guo, Canxiong, Sheng Yao, Jianhua Cao, and Zaihu Qian, Alkylation of isobutane with butenes over solid superacids, SO42−/ZrO2 and SO42−/TiO2. Applied Catalysis A: General, 1994. 107(2): p. 229-238.
66. Matsuhashi, H., M. Hino, and K. Arata, Solid catalyst treated with anion: XIX. Synthesis of the solid superacid catalyst of tin oxide treated with sulfate ion. Applied catalysis, 1990. 59(1): p. 205-212. 67. Thomazeau, Cécile, Hélène Olivier-Bourbigou, Lionel Magna, Stéphane Luts, and Bernard Gilbert, Determination of an acidic scale in room temperature ionic liquids. Journal of the American Chemical Society, 2003. 125(18): p. 5264-5265.
68. Benesi, H., Acidity of catalyst surfaces. I. Acid strength from colors of adsorbed indicators. Journal of the American Chemical Society, 1956. 78(21): p. 5490-5494.
48
69. Hirschler, A. and A. Schneider, Acid Strength Distribution Studies of Catalyst Surfaces. Journal of Chemical and Engineering Data, 1961. 6(2): p. 313-318.
70. Moscou, L. and R. Mone, Structure and catalytic properties of thermally and hydrothermally treated zeolites: Acid strength distribution of REX and REY. Journal of Catalysis, 1973. 30(3): p. 417-422. 71. Aucejo, A., M. C. Burguet, A. Corma, and V. Fornes, Beckman rearrangement of cyclohexanone-oxime on HNaY zeolites: kinetic and spectroscopic studies. Applied catalysis, 1986. 22(2): p. 187-200. 72. Itoh, Hirofumi, Tadashi Hattori, Katsuhito Suzuki, and Yuichi Murakami, Role of acid and base sites in the side-chain alkylation of alkylbenzenes with methanol on two-ion-exchanged zeolites. Journal of Catalysis, 1983. 79(1): p. 21-33.
73. Wang, K., X. Wang, and G. Li, Quantitatively study acid strength distribution on nanoscale ZSM-5. Microporous and mesoporous materials, 2006. 94(1): p. 325-329.
74. Alemdaroglu, T., Determination methods for the acidity of solid surfaces. Communications Faculty of Sciences University of Ankara B, 2001. 47: p. 27-35. 75. Kral, H., J. Roquerol, KW Sing, Characterization of Porous Solids. Vol. 39. 1988: Elsevier.
76. Kreysa, G., J. Baselt, and K. Unger, Characterisation of Porous Solids V. Vol. 128. 2000: Elsevier.
77. Chen, X.-R., Y.-H. Ju, and C.-Y. Mou, Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C, 2007. 111(50): p. 18731-18737.
指導教授 蔣孝澈(Anthony.S.T.Chiang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明