參考文獻 |
1. Song, X. and A. Sayari, Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catalysis Reviews, 1996. 38(3): p. 329-412.
2. Finnis, M., et al., Crystal structures of zirconia from first principles and self-consistent tight binding. Physical review letters, 1998. 81(23): p. 5149.
3. Smith, D.K. and W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallographica, 1965. 18(6): p. 983-991.
4. McCullough, J.t. and K. Trueblood, The crystal structure of baddeleyite (monoclinic ZrO2). Acta Crystallographica, 1959. 12(7): p. 507-511.
5. Teufer, G., The crystal structure of tetragonal ZrO2. Acta Crystallographica, 1962. 15(11): p. 1187-1187.
6. Goldschmidt, H., Selected applications of high-temperature x-ray studies in the metallurgical field. Advanced. X-Ray Analysis, 1962. 5.
7. Norman, C., P. Goulding, and I. McAlpine, Role of anions in the surface area stabilisation of zirconia. Catalysis today, 1994. 20(2): p. 313-321.
8. Norman, C., P. Goulding, and P. Moles, 3.4 The Role of Sulphate in the Stabilisation of Zirconia. Studies in Surface Science and Catalysis, 1994. 90: p. 269-272.
9. Davis, B.H., R.A. Keogh, and R. Srinivasan, Sulfated zirconia as a hydrocarbon conversion catalyst. Catalysis Today, 1994. 20(2): p. 219-256. 10. Matsuzawa, Kenji. ”Solid acid catalyst and process for preparing the same.” U.S. Patent No. 6,326,328. 4 Dec. 2001.
11. Yadav, G.D. and J.J. Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials, 1999. 33(1–3): p. 1-48.
12. Corma, A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995. 95(3): p. 559-614.
13. X. Song, S. and R. A. Kydd, Activation of sulfated zirconia catalysts Effect of water content on their activity in n-butane isomerization. Journal of the Chemical Society, Faraday Transactions, 1998. 94(9): p. 1333-1338.
14. Fărcaşiu, D. and J.Q. Li, Preparation of sulfated zirconia catalysts with improved control of sulfur content, III. Effect of conditions of catalyst synthesis on physical properties and catalytic activity12. Applied Catalysis A: General, 1998. 175(1–2): p. 1-9.
15. Almustapha, M., M. Farooq, and J.M. Andresen, Sulphated zirconia catalysed conversion of high density polyethylene to value-added products using a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, 2017.
16. Fa˛rcas¸iu, D., J.Q. Li, and S. Cameron, Preparation of sulfated zirconia catalysts with improved control of sulfur content II. Effect of sulfur content on physical properties and catalytic activity. Applied Catalysis A: General, 1997. 154(1): p. 173-184.
17. Roy, B., M. Rahman, and M. Rahman, Measurement of surface acidity of amorphous silica-alumina catalyst by amine titration method. Journal of Applied Sciences, 2005. 5: p. 1275-1278.
45
18. Deeba, M. and W.K. Hall, The Measurement of Catalyst Acidity II: Chemisorption Studies. Zeitschrift für Physikalische Chemie, 1985. 144(144): p. 85-103.
19. Cardona-Martinez, N. and J. Dumesic, Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Advances in catalysis, 1992. 38: p. 149-244.
20. Solinas, V. and I. Ferino, Microcalorimetric characterisation of acid–basic catalysts. Catalysis today, 1998. 41(1): p. 179-189.
21. Parida, K.M., S.K. Samantaray, and H.K. Mishra, SO2−4/TiO2–SiO2 Mixed Oxide Catalyst, I: Synthesis, Characterization, and Acidic Properties. Journal of Colloid and Interface Science, 1999. 216(1): p. 127-133.
22. Morterra, C. and G. Cerrato, Titrating surface acidity of sulfated zirconia catalysts: is the adsorption of pyridine a suitable probe? Physical Chemistry Chemical Physics, 1999. 1(11): p. 2825-2831.
23. Mortland, M. and K. Raman, Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays and Clay Minerals, 1968. 16(5): p. 393-398.
24. Brown, D. and C. Rhodes, Brønsted and Lewis acid catalysis with ion-exchanged clays. Catalysis Letters, 1997. 45(1): p. 35-40.
25. Parry, E., An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963. 2(5): p. 371-379.
26. Basila, M.R., T.R. Kantner, and K.H. Rhee, The Nature of the Acidic Sites on a Silica-Alumina. Characterization by Infrared Spectroscopic Studies of Trimethylamine and Pyridine Chemisorption1. The Journal of Physical Chemistry, 1964. 68(11): p. 3197-3207.
27. Morimoto, T., J. Imai, and M. Nagao, Infrared spectra of butylamine adsorbed on silica-alumina. The Journal of Physical Chemistry, 1974. 78(7): p. 704-708.
28. Miyata, H., K. Fujii, and T. Ono, Acidic properties of vanadium oxide on titania. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988. 84(9): p. 3121-3128.
29. Blanco, C., et al., Infrared studies of surface acidity and reversible folding in palygorskite. Clays and Clay Minerals, 1988. 36(4): p. 364-368.
30. Coster, D., A. Blumenfeld, and J. Fripiat, Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study. The Journal of Physical Chemistry, 1994. 98(24): p. 6201-6211.
31. Brown, D. and C. Rhodes, A new technique for measuring surface acidity by ammonia adsorption. Thermochimica acta, 1997. 294(1): p. 33-37.
32. Richter, M., et al., A new method for the quantitative determination of zeolitic Brønsted acidity. Chemical Communications, 1997(4): p. 383-384.
33. Benesi, H., Acidity of catalyst surfaces. II. Amine titration using Hammett indicators. The Journal of Physical Chemistry, 1957. 61(7): p. 970-973.
34. Johnson, O., Acidity and polymerization activity of solid acid catalysts. The Journal of Physical Chemistry, 1955. 59(9): p. 827-831.
35. Henmi, T. and K. Wada, Surface acidity of imogolite and allophane. Clays and Clay Minerals, 1974. 10: p. 231-245.
36. Kapoor, B., Weathering of micaceous clays in some Norwegian podzols. Clays and Clay Minerals, 1972. 9(4): p. 383-394.
37. Loeppert, R., L. Zelazny, and B. Volk, Acidic properties of kaolinite in water and acetonitrile. Soil Science Society of American Journal, 1977. 41(6): p. 1101-1106.
46
38. Arata, K. and M. Hino, Reaction of butane to isobutane catalyzed by the solid superacid of HfO2 treated with sulfate ion. Reaction Kinetics and Catalysis Letters, 1984. 25(1): p. 143-145.
39. Arata, K. and M. Hino, Solid catalyst treated with anion. Applied Catalysis, 1990. 59(1): p. 197-204.
40. Hino, M. and K. Arata, Iron oxide as an effective catalyst for the polycondensation of benzyl chloride, the formation of para-substituted polybenzyl. Chemistry Letters, 1979. 8(9): p. 1141-1144. 41. Hino, Makoto, and Kazushi Arata. ”Synthesis of solid superacid catalyst with acid strength of H 0⩽–16.04.” Journal of the Chemical Society, Chemical Communications 18 (1980): 851-852. 42. Hino, Makoto, and Kazushi Arata. ”Acylation of toluene with acetic and benzoic acids catalysed by a solid superacid in a heterogeneous system.” Journal of the Chemical Society, Chemical Communications 3 (1985): 112-113.
43. Hino, M., S. Kobayashi, and K. Arata, Solid catalyst treated with anion. 2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. Journal of the American Chemical Society, 1979. 101(21): p. 6439-6441.
44. Hino, Makoto, and Kazushi Arata. ”Catalytic activity of iron oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether.” Chemistry Letters 8.5 (1979): 477-480.
45. Hino, Makoto, and Kazushi Arata. ”Reaction of butane to isobutane catalyzed by iron oxide treated with sulfate ion. Solid superacid catalyst.” Chemistry Letters 8.10 (1979): 1259-1260.
46. Adeeva, V., G.D. Lei, and W.M.H. Sachtler, Isomenzation of13C labeled butane over Fe,Mn promoted sulfated ZrO2 catalyst. Applied Catalysis A: General, 1994. 118(1): p. L11-L15.
47. Iglesia, E., S.L. Soled, and G.M. Kramer, Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species. Journal of Catalysis, 1993. 144(1): p. 238-253.
48. Arata, K., Solid Superacids. Advances in Catalysis, 1990. 37: p. 165-211.
49. Arata, K., Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds. Green Chemistry, 2009. 11(11): p. 1719-1728. 50. Nascimento, P., C. Akratopoulou, M. Oszagyan, G. Coudurier, C. Travers, J. F. Joly, and J. C. Vedrine, ZrO2-SO42-Catalysts. Nature and Stability of Acid Sites Responsible for n-Butane Isomerization, in Studies in Surface Science and Catalysis, F.S. L. Guczi and T. P, Editors. 1993, Elsevier. p. 1185-1197.
51. Abdollahi-Alibeik, M. and M. Hajihakimi, Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles. Chemical Papers, 2013. 67(5): p. 490-496.
52. Faˇrcas¸iu, D. and J.Q. Li, Preparation of sulfated zirconia catalysts with improved control of sulfur content. Applied Catalysis A: General, 1995. 128(1): p. 97-105.
53. Sun Yinyong, Sulfated zirconia supported in mesoporous materials. Applied Catalysis A: General, 2002. 237(1–2): p. 21-31.
47
54. Manoli and Jean-Marie, Evolution of the Catalytic Activity in Pt/Sulfated Zirconia Catalysts: Structure, Composition, and Catalytic Properties of the Catalyst Precursor and the Calcined Catalyst. Journal of Catalysis, 1998. 178(1): p. 338-351.
55. Parvulescu, V., Coman, S., Grange, P., & Parvulescu, V. I. (1999). Preparation and characterization of sulfated zirconia catalysts obtained via various procedures. Applied Catalysis A: General, 176(1), 27-43. 56. Matsuhashi, Hiromi, Hideo Nakamura, Tatsumi Ishihara, Shinji Iwamoto, Yuichi Kamiya, Junya Kobayashi, Yoshihiro Kubota , Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009. 360(1): p. 89-97.
57. Heshmatpour, F. and R.B. Aghakhanpour, Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol–gel route. Advanced Powder Technology, 2012. 23(1): p. 80-87. 58. Yu, Shengjian, Pingping Jiang, Yuming Dong, Pingbo Zhang, Yue Zhang, and Weijie Zhang, Hydrothermal synthesis of nanosized sulfated zirconia as an efficient and reusable catalyst for esterification of acetic acid with n-butanol. Bulletin of the Korean Chemical Society, 2012. 33(2): p. 524-528. 59. Rezaei, M., S. M. Alavi, S. Sahebdelfar, and Zi-Feng Yan,Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure. Powder technology, 2006. 168(2): p. 59-63.
60. Stichert, W. and F. Schüth, Synthesis of Catalytically Active High Surface Area Monoclinic Sulfated Zirconia. Journal of Catalysis, 1998. 174(2): p. 242-245. 61. Stichert, W., F. Schüth, S. Kuba, and H. Knözinger, Monoclinic and Tetragonal High Surface Area Sulfated Zirconias in Butane Isomerization: CO Adsorption and Catalytic Results. Journal of Catalysis, 2001. 198(2): p. 277-285. 62. Nayebzadeh, H., N. Saghatoleslami, A. Maskooki, and B. R. Vahid, Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid. Chemical and Biochemical Engineering Quarterly, 2014. 28(3): p. 259-265.
63. Shiaw-Tseh Chiang, A., The Production of Dispersible Zirconia Nanocrystals: A Recent Patent Review. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering), 2014. 7(2): p. 76-95. 64. Sun, Wendong, Liping Xu, Ying Chu, and Wei Shi, Controllable synthesis, characterization and catalytic properties of WO 3/ZrO 2 mixed oxides nanoparticles. Journal of colloid and interface science, 2003. 266(1): p. 99-106. 65. Guo, Canxiong, Sheng Yao, Jianhua Cao, and Zaihu Qian, Alkylation of isobutane with butenes over solid superacids, SO42−/ZrO2 and SO42−/TiO2. Applied Catalysis A: General, 1994. 107(2): p. 229-238.
66. Matsuhashi, H., M. Hino, and K. Arata, Solid catalyst treated with anion: XIX. Synthesis of the solid superacid catalyst of tin oxide treated with sulfate ion. Applied catalysis, 1990. 59(1): p. 205-212. 67. Thomazeau, Cécile, Hélène Olivier-Bourbigou, Lionel Magna, Stéphane Luts, and Bernard Gilbert, Determination of an acidic scale in room temperature ionic liquids. Journal of the American Chemical Society, 2003. 125(18): p. 5264-5265.
68. Benesi, H., Acidity of catalyst surfaces. I. Acid strength from colors of adsorbed indicators. Journal of the American Chemical Society, 1956. 78(21): p. 5490-5494.
48
69. Hirschler, A. and A. Schneider, Acid Strength Distribution Studies of Catalyst Surfaces. Journal of Chemical and Engineering Data, 1961. 6(2): p. 313-318.
70. Moscou, L. and R. Mone, Structure and catalytic properties of thermally and hydrothermally treated zeolites: Acid strength distribution of REX and REY. Journal of Catalysis, 1973. 30(3): p. 417-422. 71. Aucejo, A., M. C. Burguet, A. Corma, and V. Fornes, Beckman rearrangement of cyclohexanone-oxime on HNaY zeolites: kinetic and spectroscopic studies. Applied catalysis, 1986. 22(2): p. 187-200. 72. Itoh, Hirofumi, Tadashi Hattori, Katsuhito Suzuki, and Yuichi Murakami, Role of acid and base sites in the side-chain alkylation of alkylbenzenes with methanol on two-ion-exchanged zeolites. Journal of Catalysis, 1983. 79(1): p. 21-33.
73. Wang, K., X. Wang, and G. Li, Quantitatively study acid strength distribution on nanoscale ZSM-5. Microporous and mesoporous materials, 2006. 94(1): p. 325-329.
74. Alemdaroglu, T., Determination methods for the acidity of solid surfaces. Communications Faculty of Sciences University of Ankara B, 2001. 47: p. 27-35. 75. Kral, H., J. Roquerol, KW Sing, Characterization of Porous Solids. Vol. 39. 1988: Elsevier.
76. Kreysa, G., J. Baselt, and K. Unger, Characterisation of Porous Solids V. Vol. 128. 2000: Elsevier.
77. Chen, X.-R., Y.-H. Ju, and C.-Y. Mou, Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C, 2007. 111(50): p. 18731-18737. |