博碩士論文 104324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.145.15.148
姓名 劉政輝(Cheng-Hui Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類多功能幹細胞於固定奈米片段 生醫材料的心肌細胞分化
(Human Embryonic Stem Cell Differentiation into Cardiomyocytes on Biomaterials Immobilized Nanosegments)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類胚胎幹細胞中的多能幹細胞和誘導多能幹細胞原自於三種胚層擁有能夠分化成多種形式的潛力:內胚層、中胚層、外胚層。例如提供給阿茲海默症治療的多巴胺分泌細胞和提供給糖尿病治療的胰島素分泌細胞。然而由於多種的分化特性,如何引導人類胚胎幹細胞分化成特定型態是一個具有挑戰的議題。幹細胞的分化結果取決於不同的人類胚胎幹細胞培養微環境因素:生物觸發分子、細胞間的作用力、物理因素、生物和材料之間的作用力。透過生化材料來模擬人類胚胎幹細胞分化成特定細胞的培養環境通常是一種較合理的方法,且目前並沒有研究是針對細胞外基質或從細胞外基質培育出的奈米片段來分化出心肌細胞。因此我們發展具有不同黏彈性的奈米片段接枝生化材料來提供給人類胚胎幹細胞分化出心肌細胞。
我們準備塗佈有不同細胞外基質的培養皿 : 基質膠 、合成胜肽-丙烯聚酯、纖維連結蛋白、層黏連蛋白-521、層黏連蛋白-511、人造玻蛋白、玻蛋白。第零天,我們利用含有GSK3B抑制劑的心肌細胞分化培養液來取代原培養液。第一到第二天,我們發現30%~40%的細胞死亡並且從表面剝落。然而,存活下來的細胞聚落中間變得更厚更結實。在第五到第六天,細胞分化成心肌細胞。第八到第十天,我們連續在表面發現到跳動中的聚落。
我們分析和評估塗佈有細胞外基質用來分化人類胚胎幹細胞成心肌細胞的培養皿,這些人類胚胎幹細胞的心肌細胞誘導結果將能用於臨床實驗和細胞的專一性機制和心肌細胞的培養等研究。
摘要(英) Human pluripotent stem cells (hPSC) of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential ability to differentiate into many kind of cell types originated from three germ layers: endoderm, mesoderm and ectoderm cells such as dopamine-secreting cells for Alzheimer disease treatment and insulin-secreting cells for diabetes treatment.1 However, it is a challenging issue to guide hPSCs to differentiate into our desired lineages of cells due to their variety of differentiation ability. The fate of differentiation of stem cells is determined by different factors existed in the microenvironment of hPSCs: bioactive molecules, cell-cell interactions, physical factors and cell-biomaterial interaction. It is a reasonable strategy to mimic the stem cell microenvironment for the differentiation of hPSCs into specific lineages of cells using optimal biomaterials for hPSC culture. Currently, it has not yet investigated which extracellular matrices (ECMs) or nanosegments derived from ECMs promote hPSCs differentiation into cardiomyocytes. We developed nanosegment-grafted biomaterials having different elasticity for hPSCs differentiation into cardiomyocytes.
We developed several biomaterials for hPSCs differentiation into cardiomyocytes. We prepared (1) ECM-coated dishes where ECMs are Matrigel, Synthemax II, fibronectin (CellStartTM), laminin-521, laminin-511, recombinant vitronectin, vitronectin, and fibronectin. On day 0, we replaced the expansion medium into cardiomyocytes differentiation medium containing the GSK3B inhibitor. On days 1-2, we observed that 30%~40% of the cells were died and detached from the surface. However, the center of the colony of living cells were getting thicker and became compact. The cells were differentiated into cardiomyocytes between days 5-6. On day 8-10, we successively observed the contracting colonies on the surface.
We evaluated the optimal ECM-coating dishes for differentiation of hPSCs into cardiomyocytes. The results for cardiomyocyte induction from hPSCs will be used in clinical application and in the investigation of molecular mechanism of specification and maturation of cardiomyocytes.
關鍵字(中) ★ 人類多功能幹細胞
★ 生醫材料
★ 心肌細胞
★ 分化
★ 固定奈米片段
關鍵字(英) ★ human pluripotent stem cell
★ biomaterial
★ cardiomyocytes
★ differentiation
★ Immobilized Nanosegments
論文目次
Chapter 1. Introduction 1
1.1 Human Pluripotent Stem Cells (hPSCs) 1
1.1.1 Human Embryonic Stem Cells (hESCs) 1
1.1.2 Human Induced Pluripotent Stem Cells (hiPSCs) 2
1.1.3 Mesenchymal Stem Cells (MSCs) 3
1.1.4 Stem Cell Therapy 5
1.2 Biomaterials for hPSCs Culture 6
1.2.1Extracelluar Matrices for hPSCs Expansion 6
1.2.2 Feeder Layer Substrates 6
1.2.3 Feeder Free Layer Substrates 6
1.2.4 Integrin-Binding Site of ECMs for hPSCs Culture 9
1.3 Cardiomyocytes Differentiation 10
1.3.1 Functional Methods for Cardiac Differentiation 10
1.3.2 Effect of Biomaterials on Cardiomyocytes Differentiation 21
1.4 Characteriation of Cardiomyocytes 26
1.4.1 Morphologies of Cardiomyocytes Derived from hESCs 26
1.4.2 Flow Cytometry Analysis of Cardiomyocytes 27
1.4.3 Immunofluorescence Staining Analysis of Cardiomyocytes 29
Chapter 2. Material and Methods 30
2.1 Materials 30
2.1.1 Cell Line 30
2.1.2 Commercial Coated Materials 31
2.1.3 Stem Cell Culture Medium 31
2.1.3 Cardiomyocytes Differentiation Medium and Chemicals 31
2.1.4 Immunostaining and Flow cytometry 31
2.1.5 Others 32
2.2 Stem Cell Culture 32
2.2.1 Human Pluripotent Stem Cell Culture and Passage 32
2.2.2 Cell density measurement 33
2.3 Cardiomyocytes Differentiation 34
2.3.1 Differentiation Medium Preparation 34
2.3.2 Cardiomyocyte differentiation protocol 35
2.4 Characterization of Cardiomyocytes 38
2.4.1 Immunofluorescence 38
2.4.2 Buffer preparation for flow cytometry 39
2.4.3 Protocol of cardiomyocytes analysis by flow cytometry 39
Chapter 3. Results and Discussion 40
3.1 Selection of Differentiation Protocol of hESCs into Cardiomyocytes 40
3.1.1 ECMs Used Differentiation Protocol Selection of hESCs into Cardiomyocytes 41
3.1.2 Cardiomyocytes Differentiation of hESCs Using Cardiomyocytes Differentiation Kit 41
3.1.3 Cardiomyocytes Differentiation of hESCs Using Jove Journal 43
3.1.4 Cardiomyocytes Differentiation of hESCs Using by Old and New Protocols of Nature Methods Journal 44
3.1.5 Analysis of Cells differentiated into Cardiomyocytes 46
3.1.6 Protocol Selection for Cardiomyocyte Differentiation 52
3.2 Cell Culture Substrates for Cardiomyocytes Differentiation of hESCs 52
3.2.1 Cardiomyocytes Differentiation of hESCs on Several ECMs 53
3.2.2 Survival Rate Analyses of Cardiomyocytes on Several ECM-Coating Dishes 56
3.2.3 Beating Colony Growth Curve on Several ECM-coating Dishes 58
3.2.4 Flow Cytometry Analysis of Cardiomyocytes on Several ECM-coating Dishes 60
3.2.5 Immunofluorescene Analyses of Cardiomyocytes 62
3.2.6 Analysis of Beating Frequency on Cardiomyocytes 68
Chapter 4. Conclusion 70
Reference 73
Supplemental Data - Figure 80
Supplemental Data - Table 104
參考文獻
1. Amit, M., et al., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 2000. 227(2): p. 271-278.
2. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nature biotechnology, 2005. 23(6): p. 699-708.
3. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
4. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147.
5. Young, R.A., Control of the Embryonic Stem Cell State. Cell, 2011. 144(6): p. 940-954.
6. Boudou, T., et al., Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Advanced Materials, 2010. 22(4): p. 441-467.
7. Sato, T. and H. Clevers, Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science, 2013. 340(6137): p. 1190-1194.
8. Kiskinis, E. and K. Eggan, Progress toward the clinical application of patient-specific pluripotent stem cells. Journal of Clinical Investigation, 2010. 120(1): p. 51-59.
9. Yang, X.L., L. Pabon, and C.E. Murry, Engineering Adolescence Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Research, 2014. 114(3): p. 511-523.
10. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocrine reviews, 2009. 30(3): p. 204-213.
11. Hyun, I., The bioethics of stem cell research and therapy. Journal of Clinical Investigation, 2010. 120(1): p. 71-75.
12. Power, C. and J.E.J. Rasko, Will Cell Reprogramming Resolve the Embryonic Stem Cell Controversy? A Narrative Review. Annals of Internal Medicine, 2011. 155(2): p. 114-121.
13. Niwa, H., J.-i. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics, 2000. 24(4): p. 372-376.
14. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & development, 2003. 17(1): p. 126-140.
15. Cartwright, P., et al., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005. 132(5): p. 885-896.
16. Li, Y., et al., Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood, 2005. 105(2): p. 635-637.
17. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
18. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. science, 2007. 318(5858): p. 1917-1920.
19. Park, I.H., et al., Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008. 451(7175): p. 141-U1.
20. Siegel, G., R. Schäfer, and F. Dazzi, The immunosuppressive properties of mesenchymal stem cells. Transplantation, 2009. 87(9S): p. S45-S49.
21. Singer, N.G. and A.I. Caplan, Mesenchymal Stem Cells: Mechanisms of Inflammation, in Annual Review of Pathology: Mechanisms of Disease, Vol 6, A.K. Abbas, S.J. Galli, and P.M. Howley, Editors. 2011, Annual Reviews: Palo Alto. p. 457-478.
22. De Miguel, M.P., et al., Immunosuppressive Properties of Mesenchymal Stem Cells: Advances and Applications. Current Molecular Medicine, 2012. 12(5): p. 574-591.
23. van Laake, L.W., et al., Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 2007. 1(1): p. 9-24.
24. Aguirre, A., I. Sancho-Martinez, and J.C.I. Belmonte, Reprogramming toward heart regeneration: stem cells and beyond. Cell Stem Cell, 2013. 12(3): p. 275-284.
25. Porrello, E.R., et al., Transient Regenerative Potential of the Neonatal Mouse Heart. Science, 2011. 331(6020): p. 1078-1080.
26. Israel, M.A., et al., Probing sporadic and familial Alzheimer′s disease using induced pluripotent stem cells. Nature, 2012. 482(7384): p. 216-U107.
27. Huang, Y.D. and L. Mucke, Alzheimer Mechanisms and Therapeutic Strategies. Cell, 2012. 148(6): p. 1204-1222.
28. Kondo, T., et al., Modeling Alzheimer′s Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular A beta and Differential Drug Responsiveness. Cell Stem Cell, 2013. 12(4): p. 487-496.
29. Niapour, A., et al., Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell transplantation, 2012. 21(5): p. 827-843.
30. Lindvall, O. and Z. Kokaia, Stem cells in human neurodegenerative disorders - time for clinical translation? Journal of Clinical Investigation, 2010. 120(1): p. 29-40.
31. Tsuji, O., et al., Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(28): p. 12704-12709.
32. Hongisto, H., et al., Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem cell research, 2012. 8(1): p. 97-108.
33. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biology of Reproduction, 2004. 70(3): p. 837-845.
34. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
35. Kleinman, H.K., et al., Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 1982. 21(24): p. 6188-6193.
36. Abraham, S., et al., Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomaterialia, 2010. 6(12): p. 4622-4633.
37. Meng, Y., et al., Characterization of integrin engagement during defined human embryonic stem cell culture. Faseb Journal, 2010. 24(4): p. 1056-1065.
38. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
39. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010. 9(9): p. 768-778.
40. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008. 375(1): p. 27-32.
41. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 581-583.
42. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
43. Villa-Diaz, L.G., et al., Concise Review: The Evolution of Human Pluripotent Stem Cell Culture: From Feeder Cells to Synthetic Coatings. Stem Cells, 2013. 31(1): p. 1-7.
44. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature biotechnology, 2001. 19(10): p. 971-974.
45. Li, Y., et al., Expansion of human embryonic stem cells in defined serum‐free medium devoid of animal‐derived products. Biotechnology and Bioengineering, 2005. 91(6): p. 688-698.
46. Lu, J., et al., Defined culture conditions of human embryonic stem cells. Proceedings of the National Academy of Sciences, 2006. 103(15): p. 5688-5693.
47. Yao, S., et al., Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences, 2006. 103(18): p. 6907-6912.
48. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nature biotechnology, 2006. 24(2): p. 185-187.
49. Wang, L., et al., Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 2007. 110(12): p. 4111-4119.
50. Derda, R., et al., Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS chemical biology, 2007. 2(5): p. 347-355.
51. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424-429.
52. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC developmental biology, 2010. 10(1): p. 60.
53. Braam, S.R., et al., Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self‐Renewal via αVβ5 Integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
54. Rowland, T.J., et al., Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem cells and development, 2009. 19(8): p. 1231-1240.
55. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-128.
56. Silva, G.V., et al., Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 2005. 111(2): p. 150-156.
57. Graham, B.H., et al., A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genetics, 1997. 16(3): p. 226-234.
58. Passier, R., L.W. van Laake, and C.L. Mummery, Stem-cell-based therapy and lessons from the heart. Nature, 2008. 453(7193): p. 322-329.
59. Liang, P., et al., Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity. Circulation, 2013. 127(16): p. 1677-+.
60. Mathur, A., et al., Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications. Scientific Reports, 2015. 5: p. 7.
61. Qian, L., et al., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 2012. 485(7400): p. 593-+.
62. Chien, K.R., I.J. Domian, and K.K. Parker, Cardiogenesis and the Complex Biology of Regenerative Cardiovascular Medicine. Science, 2008. 322(5907): p. 1494-1497.
63. Talkhabi, M., N. Aghdami, and H. Baharvand, Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life sciences, 2016. 145: p. 98-113.
64. Mummery, C.L., et al., Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes. Circulation research, 2012. 111(3): p. 344-358.
65. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-U2.
66. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of clinical investigation, 2001. 108(3): p. 407-414.
67. Mauritz, C., et al., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 2008. 118(5): p. 507-517.
68. Yang, L., et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 2008. 453(7194): p. 524-528.
69. Karakikes, I., et al., Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem cells translational medicine, 2014. 3(1): p. 18-31.
70. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
71. Mummery, C., et al., Differentiation of human embryonic stem cells to cardiomyocytes. Circulation, 2003. 107(21): p. 2733-2740.
72. Xu, X.Q., et al., Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 2008. 76(9): p. 958-970.
73. Dyer, M.A., et al., Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development, 2001. 128(10): p. 1717-1730.
74. Garcia-Martinez, V. and G.C. Schoenwolf, Primitive-streak origin of the cardiovascular system in avian embryos. Developmental biology, 1993. 159(2): p. 706-719.
75. Nascone, N. and M. Mercola, An inductive role for the endoderm in Xenopus cardiogenesis. Development, 1995. 121(2): p. 515-523.
76. Watanabe, K., et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature biotechnology, 2007. 25(6): p. 681-686.
77. Amano, M., M. Nakayama, and K. Kaibuchi, Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity. Cytoskeleton, 2010. 67(9): p. 545-554.
78. Laflamme, M.A., et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature biotechnology, 2007. 25(9): p. 1015-1024.
79. Lian, X., et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences, 2012. 109(27): p. E1848-E1857.
80. Burridge, P.W., et al., Chemically defined generation of human cardiomyocytes. Nature methods, 2014. 11(8): p. 855-860.
81. Bhattacharya, S., et al., High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. JoVE (Journal of Visualized Experiments), 2014(91): p. e52010-e52010.
82. Naito, A.T., et al., Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(52): p. 19812-19817.
83. Ren, Y.M., et al., Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2011. 51(3): p. 280-287.
84. Desbordes, S.C. and L. Studer, Adapting human pluripotent stem cells to high-throughput and high-content screening. Nature protocols, 2013. 8(1): p. 111-130.
85. Lecina, M., et al., Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1609-1619.
86. Kempf, H., et al., Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem cell reports, 2014. 3(6): p. 1132-1146.
87. Oh, S.K., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem cell research, 2009. 2(3): p. 219-230.
88. Graichen, R., et al., Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 2008. 76(4): p. 357-370.
89. Carpenedo, R.L., C.Y. Sargent, and T.C. McDevitt, Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells, 2007. 25(9): p. 2224-2234.
90. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem cells, 2008. 26(9): p. 2300-2310.
91. Niebruegge, S., et al., Generation of human embryonic stem cell‐derived mesoderm and cardiac cells using size‐specified aggregates in an oxygen‐controlled bioreactor. Biotechnology and bioengineering, 2009. 102(2): p. 493-507.
92. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature biotechnology, 2010. 28(6): p. 611-615.
93. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications, 2012. 3: p. 1236.
94. Moyes, K.W., et al., Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem cells and development, 2013. 22(16): p. 2315-2325.
95. Hook, A.L., et al., Polymer microarrays for high throughput discovery of biomaterials. JoVE (Journal of Visualized Experiments), 2012(59): p. e3636-e3636.
96. Patel, A.K., et al., A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials, 2015. 61: p. 257-265.
97. Köhler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. nature, 1975. 256(5517): p. 495-497.
98. Johnson, K., M. Dooner, and P. Quesenberry, Fluorescence activated cell sorting: a window on the stem cell. Current pharmaceutical biotechnology, 2007. 8(3): p. 133-139.
99. Bonner, W., et al., Fluorescence activated cell sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
100. Carter, N. and M.G. Ormerod, Introduction to the principles of flow cytometry. Flow cytometry: a practical approach, 2000(229): p. 1.
101. Zhang, J., et al., Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem CellsNovelty and Significance. Circulation research, 2012. 111(9): p. 1125-1136.
102. Sharma, A., et al., Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. JoVE (Journal of Visualized Experiments), 2015(97): p. e52628-e52628.
103. Allen, D. and J. Kentish, The cellular basis of the length-tension relation in cardiac muscle. Journal of molecular and cellular cardiology, 1985. 17(9): p. 821-840.
指導教授 樋口亜紺(Akon Higuchi) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明