參考文獻 |
[1] 李堅明, “我看華沙氣候會議,” 能源報導月刊, 第一卷, 編號 1, pp. 37-40, 2014.
[2] O. A.A., ”Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes,” J. CO2 Util, vol. 3, pp. 74-92, 2013.
[3] D.M. Todd, ”Gas Turbine Improvements Enhance IGCC Viability,” in 2000 Gasification Technologies Conference , San Francisco, 2000.
[4] A. Agarwal, , Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[5] C. W. Skarstrom, ”Esso research and engineering company”. US Patent 2944627, 1960.
[6] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: science and technology, Kluwer, 1988.
[7] W. Choi, T. Kwon and Y. Yeo, ”Optimal operation of the pressure swing adsorption (PSA) process,” Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[8] R. T. Yang, Gas seperation by adsorption process, Imperial College Press, 1997.
[9] D. Daniel and M. P. G. De, ”Process for separating a binary gaseous mixture by adsorption”. United States Patent 3,155,468, 1964.
[10] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, ”Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon,” Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[11] K. Chihara and M. Suzuki, ”Air drying by pressure swing adsorption,” J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[12] J. J. Collins, ”Air separation by adsorption”. United States Patent 4,026,680, 1975.
[13] S. J. Doong and R. T. Yang, ”Hydrogen purification by the multibed pressure swing adsorption process,” React. Polym., vol. 6, pp. 7-13, 1987.
[14] L. Jiang, V.G. Fox and L.T. Biegler, ”Simulation and optimal design of multiple-bed pressure swing adsorption systems,” AIChE J., vol. 50, pp. 2904-2914, 2004.
[15] A. Fuderer and E. Rudelstorfer, ”Selective adsorption process”. United States Patent 3,986,849, 1976.
[16] P. H. Turnock and R. H. Kadlec, ”Separation of nitrogen and methane via periodic adsorption,” AIChE J., vol. 17, pp. 335-342, 1971.
[17] R.T. Yang and S. J. Doong, ”Gas separation by pressure swing adsorption: a pore-diffusion model for bulk separation,” AIChE J., vol. 31, pp. 1829-1842, 1985.
[18] S. Farooq and D. M. Ruthven, ”A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process,” Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[19] E. Glueckauf and J. I. Coates, ”Theory of chromatography. part IV. the influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation,” J. Chem. Soc., pp. 1315-1321, 1947.
[20] P. Webley, R. Singh, M. K. R. Reddy, S. Wilson, K. Joshi and J. C. D. D. Costa, ”High temperature materials for CO2 capture,” Energy Procedia, vol. 1, pp. 623-630, 2008.
[21] Q. Huang and M. Eić, ”Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process,” Sep. Purif. Technol., vol. 103, pp. 203-215, 2013.
[22] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, ”Optimization of one- and two-stage kinetically controlled CO2 capture processes from postcombustion flue gas on a carbon molecular sieve,” Ind. Eng. Chem. Res., vol. 53, pp. 9186-9198, 2014.
[23] V. G. Gomes and K. W. K. Yee, ”Pressure swing adsorption for carbon dioxide sequestration from exhaust gases,” Sep. Purif. Technol., vol. 28, pp. 161-171, 2002.
[24] J. Zhang, P. A. Webley and P. Xiao, ”Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas,” Energy Convers. Manage., vol. 49, pp. 346-356, 2008.
[25] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, ”Carbon dioxide-nitrogen separation through pressure swing adsorption,” Chem. Eng. J., vol. 172, pp. 698-704, 2011.
[26] S. V. Sivakumar and D. P. Rao, ”Modified duplex PSA. 1. sharp separation and process intensification for CO2−N2−13X zeolite system,” Ind. Eng. Chem. Res., vol. 50, pp. 3426-3436, 2011.
[27] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, ”CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study,” AIChE J., vol. 60, pp. 1830-1842, 2014.
[28] D. Marx, L. Joss, M. Hefti, M. Gazzani and M. Mazzotti, ”CO2 capture from a binary CO2/N-2 and a ternary CO2/N-2/H-2 mixture by PSA: experiments and predictions,” Ind. Eng. Chem. Res., vol. 54, pp. 6035-6045, 2015.
[29] A. Golmakani, S. Fatemi and J. Tamnanloo, ”CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34,” Ind. Eng. Chem. Res., vol. 55, pp. 334-350, 2016.
[30] L. Riboldi and O. Bolland, ”Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants,” Int. J. Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[31] D. Y. C. Leunga, G. Caramannab and M. M. Maroto-Valerb, ”An overview of current status of carbon dioxide capture and storage technologies,” Renewable Sustainable Energy Rev., vol. 39, pp. 426-443, 2014.
[32] M. Zaman and J. H. Lee, ”Carbon capture from stationary power generation sources: a review of the current status of the technologies,” Korean J. Chem. Eng., vol. 30, pp. 1497-1526, 2013.
[33] N. Susarla, R. Haghpanahb, I. A. Karimia, S. Farooqa, A. Rajendranb, L. S. C. Tanc and J. S. T. Limca, ”Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption,” Chem. Eng. Res. Des., vol. 102, pp. 354-367, 2015.
[34] Cho S. H., Park J. H., Beum H. T., Han S. S., and Kim J. N, ”A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption,” Stud SUrf Sci Catal, no. 153, pp. 405-410, 2004.
[35] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, 1998.
[36] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Dekker, 1975.
[37] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd ed., Wiley, 2007.
[38] E. N. Fuller, P. D. Schettler and J. C. Giddings, ”A comparison of methods for predicting gaseous diffusion coefficients,” J. Gas Chromatogr., vol. 3, pp. 222-227, 1965.
[39] E. N. Fuller, K. Ensley and J. C. Giddings, ”Diffusion of halogenated hydrocarbons in helium. the effect of structure on collision cross sections,” J. Phys. Chem., vol. 73, pp. 3679-3685, 1969.
[40] D. F. Fairbanks and C.R. Wilke, ”Diffusion coefficients in multicomponent gas mixtures,” Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[41] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, 2005.
[42] W. H. McAdams, Heat transmission, 3rd ed., New York: McGraw-Hill, 1954.
[43] S. Ruthven and D. M. Farooq, ”Heat effects in adsorptioncolumn dynamics. 2. experimental validation of theone-dimensional model.,” Ind. Eng. Chem. Res., vol. 29, pp. 1084-1090, 1990.
[44] N. Wakao, S. Kaguei and T. Funazkri, ”Effect of fluid dispersioncoefficients on particle-to-fluid heat transfer coefficients inpacked beds: correlation of nusselt numbers.,” Chem. Eng. Sci., vol. 34, pp. 325-336, 1979.
[45] G. Carta and A. Cincotti, ”Film model approximation fornon-linear adsorption and diffusion in spherical particles.,” Chem. Eng. Sci., vol. 53, pp. 3483-3488, 1998.
[46] J. Karger, D. M. Ruthven and J. Wiley,, Diffusion in zeolites and other microporous solids, Wiley, 2008.
[47] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and ionexchange. in: Green, D.W. (Ed.), Perry’s chemical engineers’ handbook., 7th ed., McGrawHill, 1999.
[48] K. Kawazoe, M. Suzuki and K. Chihara, ”Chromatographic study of diffusion in molecular-sieving carbon.,” J. Chem. Eng. Jpn., vol. 7, pp. 151-157, 1974.
[49] H. Qinglin, S. M. Sundaram and S. Farooq, ”Revisiting transport of gases in the micropores of carbon molecularsieves.,” Langmuir, vol. 19, pp. 393-405, 2003.
[50] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, ”Diffusion mechanism of CO2 in 13X zeolite beads,” Adsorption, vol. 20, pp. 121-135, 2014.
[51] P. V. Danckwerts, ”Continuous flow systems: distribution of residence,” Chem. Eng. Sci., vol. 2, pp. 1-13, 1953.
[52] 李念祖, “利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗,” 國立中央大學,碩士論文, 民國104年.
[53] J. M. Smith and H. C. Ness, Introduction to chemical engineering thermodynamics, 4th ed., McGraw-Hill Inc., 1987.
[54] 吳碧卿, “製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗,” 國立中央大學,碩士論文, 民國106年.
[55] Y. A. Cengel and M. A. Boles, Thermodynamics: an engineering approach, Fifth Edition, McGraw-Hill, 2004.
[56] Anten Chemical, “Zeolite - structure and properties,” 2016年6月26日,. [線上]. Available: 取自:http://www.antenchem.com/en/News/Zeolite_technology/ZeoliteMolecularSieve.html.
[57] M. M. Hassan, N. S. Raghvan and D. M. Ruthven, ”Pressure swing air separation on a carbon molecular sieve—II. investigation of a modified cycle with pressure equalization and no purge,” Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
[58] National Energy Technology Laboratory, “Evaluation of alternate water gas shift configurations for IGCC systems,” The United States Department of Energy, 2009.
[59] P. Luby, ”Zero carbon power generation,” Petroleum & Coal, vol. 46, pp. 1-16, 2004.
[60] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea and C. A. Grande, ”adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation,” Ind. Eng. Chem. Res., vol. 53, pp. 15414-15426, 2014.
[61] T. L. P. Dantas, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de AzevedoA. E. Rodrigues and R. F. P. M. Moreira, ”Modeling of the fixed-bed asdsorption of carbon dioxide and a carbon dioxide nitrogen mixture on zeolite 13X,” Braz. J. Chem. Eng., vol. 28, pp. 533-544, 2011. |