博碩士論文 104324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.147.68.39
姓名 陳威宇(Wei-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以變壓吸附法純化氣化合成氣經富氧燃燒後高純度二氧化碳之模擬研究
(Simulation of Concentrating High Purity Carbon Dioxide from Syngas after Oxy-fuel Combustion by Pressure Swing Adsorption Process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用變壓吸附法純化氣化合成氣經富氧燃燒及除水之氣體中二氧化碳,高純度二氧化碳之價值在於其不需經過轉化,可直接作為溶劑與工作/熱傳流體(Working/heat transfer fluid)之用,亦可用於焊接、急速冷凍、設備清洗、醫療、製程反應、晶圓、LED、電子面板等用途,此外,將二氧化碳作為進料,藉由轉化程序,可用以生產化工、生化及電化學產業所需之具有經濟價值之化學品。
合成氣之組成為氫氣、一氧化碳、二氧化碳、甲烷、水及少量的氮氣、氬氣,經過富氧燃燒及除水後,產出約為95%~97.4%二氧化碳濃度氣體及少量氮氣、氬氣,本研究使用UOP 13X沸石作為吸附劑,以Langmuir-Freundlich為模型迴歸吸附劑對各成份氣體的之等溫平衡吸附曲線以取得各項參數,利用理論計算線性驅動力質傳係數用於程序模擬,並與突破曲線實驗、脫附實驗及單塔四步驟程序實驗結果進行驗證,證明程式的可靠度。
最後採用四塔二十四步驟及四塔二十步驟變壓吸附程序進行模擬,藉由探討儲存槽位置、recycle程序之有無及不同的操作變因以尋求最適化操作條件,以無儲存槽附加recycle之四塔二十步驟變壓吸附程序,進料壓力5 atm,塔長105 cm,真空壓力0.238 atm、高壓吸附231秒,同向減壓129秒,抽真空486秒,平衡時間204秒,溫度338.14 K為最佳操作條件,其塔底二氧化碳濃度達99.99994%,回收率9.81%。
摘要(英)
This research studies concentrating carbon dioxide from the syngas of a gasifier after oxy-fuel combustion and dehydration by pressure swing adsorption (PSA) process, so that the concentrated carbon dioxide can be captured and stored to reduce greenhouse gas emission. Zeolite 13X is used in this study. In the beginning of this study, the experimental adsorption isotherm data were regressed to obtain the parameters of Langmuir-Freundlich isotherm equation. Then the k value of linear driving force (LDF) model was calculated by theory and verified by breakthrough curve and desorption experiment. Then we verified the simulation program by comparison with the data of a single-bed four-step process experiment. The agreement is fine. At the end of this study, four-bed twenty-four-step and four-bed twenty-step PSA process for syngas after oxyfuel combustion and dehydration (95% CO2, 5%N2) will be studied to find the optimal operating conditions. The optimal operating conditions are feed pressure 5.00atm, vacuum pressure 0.238atm, adsorption time 231s, cocurrent depressurizaton time 129s, vacuum time 486s, pressurization equilibrium time 204s, temperature 338.14K. The simulation results of optimal operating conditions are 99.99994% purity and 9.81% recovery of carbon dioxide at bottom product of four-bed twenty-step PSA process without tank and with recycle.
關鍵字(中) ★ 變壓吸附
★ 模擬
★ 高純度二氧化碳
★ 富氧燃燒
★ 等溫吸附曲線
★ 突破曲線
關鍵字(英) ★ Pressure swing adsorption
★ Simulation
★ High purity carbon dioxide
★ Oxy-fuel Combustion
★ Isotherm
★ Breakthrough curve
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑及其選擇性 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展與改進 9
2-2-2 理論之回顧 14
2-3研究背景與目的 16
第三章、 理論 20
3-1 基本假設 21
3-2 統制方程式 22
3-3 吸附平衡關係式 27
3-3-1 等溫吸附平衡關係式 27
3-3-2 質傳驅動力模式 28
3-3-3 吸附熱關係式 28
3-4 參數推導 29
3-4-1 軸向分散係數 29
3-4-2 熱傳係數 32
3-4-3 線性驅動力質傳係數 35
3-5 邊界條件與流速 39
3-5-1 邊界條件與節點流速 39
3-5-2 閥公式 40
3-6 求解步驟 41
第四章、 等溫平衡吸附曲線與吸脫附曲線 44
4-1 吸附平衡(Adsorption Equilibrium) 45
4-1-1 氣體與吸附劑性質 45
4-1-2 等溫平衡吸附曲線(Isotherm) 47
4-2 吸附動力學(Adsorption kinetics) 51
4-2-1 突破曲線模擬驗證 51
4-2-2 脫附實驗模擬驗證 59
第五章、 製程描述 63
5-1 單塔四步驟變壓吸附程序 65
5-2 四塔二十四步驟及四塔二十步驟變壓吸附程序 67
5-3 產率與能耗計算 80
第六章、 數據分析與結果討論 82
6-1 單塔四步驟變壓吸附法純化合成氣中二氧化碳之驗證 82
6-1-1進料壓力對單塔四步驟PSA製程之驗證 84
6-2 氣化合成氣進料四塔二十四步驟及四塔二十步驟變壓吸附程序之模擬 88
6-2-1 儲存槽及recycle程序對四塔二十四步驟及四塔二十步驟PSA程序之影響及適合純化高純度二氧化碳程序之選擇 91
6-2-2 進料壓力對四塔二十四步驟及四塔二十步驟PSA程序之影響及適合純化高純度二氧化碳程序之選擇 93
6-2-3 進料溫度對四塔二十步驟PSA程序之影響 100
6-2-4 Step 5/10/15/20時間對四塔二十步驟PSA程序之影響 105
6-2-5 塔長對四塔二十步驟PSA程序之影響 109
6-2-6 Step 2/7/12/17時間對四塔二十步驟PSA程序之影響 114
6-2-7 逆向減壓壓力對四塔二十步驟PSA程序之影響 118
6-2-8 最適化結果討論 122
第七章、 結論 124
7-1 結論 124
符號說明 127
參考文獻 132
附錄A、流速之估算方法 137
參考文獻

[1] 李堅明, “我看華沙氣候會議,” 能源報導月刊, 第一卷, 編號 1, pp. 37-40, 2014.
[2] O. A.A., ”Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes,” J. CO2 Util, vol. 3, pp. 74-92, 2013.
[3] D.M. Todd, ”Gas Turbine Improvements Enhance IGCC Viability,” in 2000 Gasification Technologies Conference , San Francisco, 2000.
[4] A. Agarwal, , Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[5] C. W. Skarstrom, ”Esso research and engineering company”. US Patent 2944627, 1960.
[6] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: science and technology, Kluwer, 1988.
[7] W. Choi, T. Kwon and Y. Yeo, ”Optimal operation of the pressure swing adsorption (PSA) process,” Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[8] R. T. Yang, Gas seperation by adsorption process, Imperial College Press, 1997.
[9] D. Daniel and M. P. G. De, ”Process for separating a binary gaseous mixture by adsorption”. United States Patent 3,155,468, 1964.
[10] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, ”Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon,” Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[11] K. Chihara and M. Suzuki, ”Air drying by pressure swing adsorption,” J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[12] J. J. Collins, ”Air separation by adsorption”. United States Patent 4,026,680, 1975.
[13] S. J. Doong and R. T. Yang, ”Hydrogen purification by the multibed pressure swing adsorption process,” React. Polym., vol. 6, pp. 7-13, 1987.
[14] L. Jiang, V.G. Fox and L.T. Biegler, ”Simulation and optimal design of multiple-bed pressure swing adsorption systems,” AIChE J., vol. 50, pp. 2904-2914, 2004.
[15] A. Fuderer and E. Rudelstorfer, ”Selective adsorption process”. United States Patent 3,986,849, 1976.
[16] P. H. Turnock and R. H. Kadlec, ”Separation of nitrogen and methane via periodic adsorption,” AIChE J., vol. 17, pp. 335-342, 1971.
[17] R.T. Yang and S. J. Doong, ”Gas separation by pressure swing adsorption: a pore-diffusion model for bulk separation,” AIChE J., vol. 31, pp. 1829-1842, 1985.
[18] S. Farooq and D. M. Ruthven, ”A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process,” Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[19] E. Glueckauf and J. I. Coates, ”Theory of chromatography. part IV. the influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation,” J. Chem. Soc., pp. 1315-1321, 1947.
[20] P. Webley, R. Singh, M. K. R. Reddy, S. Wilson, K. Joshi and J. C. D. D. Costa, ”High temperature materials for CO2 capture,” Energy Procedia, vol. 1, pp. 623-630, 2008.
[21] Q. Huang and M. Eić, ”Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process,” Sep. Purif. Technol., vol. 103, pp. 203-215, 2013.
[22] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, ”Optimization of one- and two-stage kinetically controlled CO2 capture processes from postcombustion flue gas on a carbon molecular sieve,” Ind. Eng. Chem. Res., vol. 53, pp. 9186-9198, 2014.
[23] V. G. Gomes and K. W. K. Yee, ”Pressure swing adsorption for carbon dioxide sequestration from exhaust gases,” Sep. Purif. Technol., vol. 28, pp. 161-171, 2002.
[24] J. Zhang, P. A. Webley and P. Xiao, ”Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas,” Energy Convers. Manage., vol. 49, pp. 346-356, 2008.
[25] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, ”Carbon dioxide-nitrogen separation through pressure swing adsorption,” Chem. Eng. J., vol. 172, pp. 698-704, 2011.
[26] S. V. Sivakumar and D. P. Rao, ”Modified duplex PSA. 1. sharp separation and process intensification for CO2−N2−13X zeolite system,” Ind. Eng. Chem. Res., vol. 50, pp. 3426-3436, 2011.
[27] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, ”CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study,” AIChE J., vol. 60, pp. 1830-1842, 2014.
[28] D. Marx, L. Joss, M. Hefti, M. Gazzani and M. Mazzotti, ”CO2 capture from a binary CO2/N-2 and a ternary CO2/N-2/H-2 mixture by PSA: experiments and predictions,” Ind. Eng. Chem. Res., vol. 54, pp. 6035-6045, 2015.
[29] A. Golmakani, S. Fatemi and J. Tamnanloo, ”CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34,” Ind. Eng. Chem. Res., vol. 55, pp. 334-350, 2016.
[30] L. Riboldi and O. Bolland, ”Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants,” Int. J. Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[31] D. Y. C. Leunga, G. Caramannab and M. M. Maroto-Valerb, ”An overview of current status of carbon dioxide capture and storage technologies,” Renewable Sustainable Energy Rev., vol. 39, pp. 426-443, 2014.
[32] M. Zaman and J. H. Lee, ”Carbon capture from stationary power generation sources: a review of the current status of the technologies,” Korean J. Chem. Eng., vol. 30, pp. 1497-1526, 2013.
[33] N. Susarla, R. Haghpanahb, I. A. Karimia, S. Farooqa, A. Rajendranb, L. S. C. Tanc and J. S. T. Limca, ”Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption,” Chem. Eng. Res. Des., vol. 102, pp. 354-367, 2015.
[34] Cho S. H., Park J. H., Beum H. T., Han S. S., and Kim J. N, ”A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption,” Stud SUrf Sci Catal, no. 153, pp. 405-410, 2004.
[35] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, 1998.
[36] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Dekker, 1975.
[37] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd ed., Wiley, 2007.
[38] E. N. Fuller, P. D. Schettler and J. C. Giddings, ”A comparison of methods for predicting gaseous diffusion coefficients,” J. Gas Chromatogr., vol. 3, pp. 222-227, 1965.
[39] E. N. Fuller, K. Ensley and J. C. Giddings, ”Diffusion of halogenated hydrocarbons in helium. the effect of structure on collision cross sections,” J. Phys. Chem., vol. 73, pp. 3679-3685, 1969.
[40] D. F. Fairbanks and C.R. Wilke, ”Diffusion coefficients in multicomponent gas mixtures,” Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[41] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, 2005.
[42] W. H. McAdams, Heat transmission, 3rd ed., New York: McGraw-Hill, 1954.
[43] S. Ruthven and D. M. Farooq, ”Heat effects in adsorptioncolumn dynamics. 2. experimental validation of theone-dimensional model.,” Ind. Eng. Chem. Res., vol. 29, pp. 1084-1090, 1990.
[44] N. Wakao, S. Kaguei and T. Funazkri, ”Effect of fluid dispersioncoefficients on particle-to-fluid heat transfer coefficients inpacked beds: correlation of nusselt numbers.,” Chem. Eng. Sci., vol. 34, pp. 325-336, 1979.
[45] G. Carta and A. Cincotti, ”Film model approximation fornon-linear adsorption and diffusion in spherical particles.,” Chem. Eng. Sci., vol. 53, pp. 3483-3488, 1998.
[46] J. Karger, D. M. Ruthven and J. Wiley,, Diffusion in zeolites and other microporous solids, Wiley, 2008.
[47] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and ionexchange. in: Green, D.W. (Ed.), Perry’s chemical engineers’ handbook., 7th ed., McGrawHill, 1999.
[48] K. Kawazoe, M. Suzuki and K. Chihara, ”Chromatographic study of diffusion in molecular-sieving carbon.,” J. Chem. Eng. Jpn., vol. 7, pp. 151-157, 1974.
[49] H. Qinglin, S. M. Sundaram and S. Farooq, ”Revisiting transport of gases in the micropores of carbon molecularsieves.,” Langmuir, vol. 19, pp. 393-405, 2003.
[50] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, ”Diffusion mechanism of CO2 in 13X zeolite beads,” Adsorption, vol. 20, pp. 121-135, 2014.
[51] P. V. Danckwerts, ”Continuous flow systems: distribution of residence,” Chem. Eng. Sci., vol. 2, pp. 1-13, 1953.
[52] 李念祖, “利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗,” 國立中央大學,碩士論文, 民國104年.
[53] J. M. Smith and H. C. Ness, Introduction to chemical engineering thermodynamics, 4th ed., McGraw-Hill Inc., 1987.
[54] 吳碧卿, “製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗,” 國立中央大學,碩士論文, 民國106年.
[55] Y. A. Cengel and M. A. Boles, Thermodynamics: an engineering approach, Fifth Edition, McGraw-Hill, 2004.
[56] Anten Chemical, “Zeolite - structure and properties,” 2016年6月26日,. [線上]. Available: 取自:http://www.antenchem.com/en/News/Zeolite_technology/ZeoliteMolecularSieve.html.
[57] M. M. Hassan, N. S. Raghvan and D. M. Ruthven, ”Pressure swing air separation on a carbon molecular sieve—II. investigation of a modified cycle with pressure equalization and no purge,” Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
[58] National Energy Technology Laboratory, “Evaluation of alternate water gas shift configurations for IGCC systems,” The United States Department of Energy, 2009.
[59] P. Luby, ”Zero carbon power generation,” Petroleum & Coal, vol. 46, pp. 1-16, 2004.
[60] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea and C. A. Grande, ”adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation,” Ind. Eng. Chem. Res., vol. 53, pp. 15414-15426, 2014.
[61] T. L. P. Dantas, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de AzevedoA. E. Rodrigues and R. F. P. M. Moreira, ”Modeling of the fixed-bed asdsorption of carbon dioxide and a carbon dioxide nitrogen mixture on zeolite 13X,” Braz. J. Chem. Eng., vol. 28, pp. 533-544, 2011.
指導教授 周正堂、楊閎舜(Cheng-Tung Chou Hong-sung Yang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明