參考文獻 |
1. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
2. Dyce, P.W., et al., Stem cells with multilineage potential derived from porcine skin. Biochemical and Biophysical Research Communications, 2004. 316(3): p. 651-658.
3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
4. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-1373.
5. Maruyama, M., et al., Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. Journal of Biological Chemistry, 2005. 280(26): p. 24371-24379.
6. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
7. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981. 78(12): p. 7634-7638.
8. Thomson, J.A., et al., Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A, 1995. 92(17): p. 7844-8.
9. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development, 2003. 17(1): p. 126-140.
10. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p. 379-391.
11. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-655.
12. Cartwright, P., et al., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005. 132(5): p. 885-896.
13. Locke, M., J. Windsor, and P.R. Dunbar, Human adipose-derived stem cells: isolation, characterization and applications in surgery. Anz Journal of Surgery, 2009. 79(4): p. 235-244.
14. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-1301.
15. Prockop, D.J., Marrow stromal cells as stem cells for continual renewal of nonhematopoietic tissues and as potential vectors for gene therapy. Journal of Cellular Biochemistry, 1998: p. 284-285.
16. Meirelles, L.D. and N.B. Nardi, Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. British Journal of Haematology, 2003. 123(4): p. 702-711.
17. Sethe, S., A. Scutt, and A. Stolzing, Aging of mesenchymal stem cells. Ageing Research Reviews, 2006. 5(1): p. 91-116.
18. Giordano, A., U. Galderisi, and I.R. Marino, From the laboratory bench to the patients bedside: An update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology, 2007. 211(1): p. 27-35.
19. Mullersieburg, C.E. and E. Deryugina, THE STROMAL CELLS GUIDE TO THE STEM-CELL UNIVERSE. Stem Cells, 1995. 13(5): p. 477-486.
20. Zhang, J.W., et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003. 425(6960): p. 836-841.
21. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
22. Zuk, P.A., et al., Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 2001. 7(2): p. 211-228.
23. Rodriguez-Lozano, F.J., et al., Mesenchymal stem cells derived from dental tissues. Int Endod J, 2011. 44(9): p. 800-6.
24. Pierdomenico, L., et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, 2005. 80(6): p. 836-42.
25. Kerkis, I. and A.I. Caplan, Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev, 2012. 18(2): p. 129-38.
26. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000. 109(1): p. 235-42.
27. Covas, D.T., et al., Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res, 2003. 36(9): p. 1179-83.
28. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
29. Bianco, P. and P. Gehron Robey, Marrow stromal stem cells. Journal of Clinical Investigation, 2000. 105(12): p. 1663-1668.
30. Jori, F.P., et al., Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem, 2005. 94(4): p. 645-55.
31. Grigoriadis, A.E., J.N. Heersche, and J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol, 1988. 106(6): p. 2139-51.
32. Cheng, S.L., et al., Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology, 1994. 134(1): p. 277-86.
33. Loffler, G. and H. Hauner, Adipose tissue development: the role of precursor cells and adipogenic factors. Part II: The regulation of the adipogenic conversion by hormones and serum factors. Klin Wochenschr, 1987. 65(17): p. 812-7.
34. Hauner, H., P. Schmid, and E.F. Pfeiffer, Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab, 1987. 64(4): p. 832-5.
35. Young, C., et al., A porcine model for adipose tissue-derived endothelial cell transplantation. Cell Transplant, 1992. 1(4): p. 293-8.
36. Gronthos, S., et al., Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 2001. 189(1): p. 54-63.
37. Mineda, K., et al., Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel. Stem Cells Translational Medicine, 2015. 4(12): p. 1511-1522.
38. Yu, J., et al., Stemness and transdifferentiation of adipose-derived stem cells using l-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials, 2014. 35(11): p. 3516-3526.
39. Aust, L., et al., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
40. Boquest, A.C., et al., Isolation and transcription profiling of purified uncultured human stromal stem cells: Alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 2005. 16(3): p. 1131-1141.
41. Chen, D.C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
42. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006. 24(2): p. 376-385.
43. Higuchi, A., et al., Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. Journal of Membrane Science, 2011. 366(1-2): p. 286-294.
44. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-8239.
45. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005. 74B(1): p. 511-519.
46. Higuchi, A., et al., Polymeric Materials for Ex vivo Expansion of Hematopoietic Progenitor and Stem Cells. Polymer Reviews, 2009. 49(3): p. 181-200.
47. Park, H. and K. Na, Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials, 2013. 34(28): p. 6992-7000.
48. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115.
49. Chung, M.T., et al., CD90 (Thy-1)-Positive Selection Enhances Osteogenic Capacity of Human Adipose-Derived Stromal Cells. Tissue Engineering Part A, 2013. 19(7-8): p. 989-997.
50. Schriebl, K., et al., Selective Removal of Undifferentiated Human Embryonic Stem Cells Using Magnetic Activated Cell Sorting Followed by a Cytotoxic Antibody. Tissue Engineering Part A, 2012. 18(9-10): p. 899-909.
51. Liu, H.L., et al., Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4(+) lymphocytes. Biomaterials, 2008. 29(29): p. 4003-4011.
52. Chen, L.Y., et al., Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomaterialia, 2012. 8(5): p. 1749-1758.
53. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7.
54. Higuchi, A., et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Scientific Reports, 2015. 5: p. 11.
55. Di Rocco, G., et al., Myogenic potential of adipose-tissue-derived cells. Journal of Cell Science, 2006. 119(14): p. 2945-2952.
56. Wickham, M.Q., et al., Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical Orthopaedics and Related Research, 2003(412): p. 196-212.
57. Gimble, J.M. and F. Guilak, Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003. 5(5): p. 362-369.
58. Gimble, J.M. and F. Guilak, Differentiation potential of adipose derived adult stem (ADAS) cells. Current Topics in Developmental Biology, Vol 58, 2003. 58: p. 137-160.
59. Tholpady, S.S., et al., Adipose Tissue: Stem Cells and Beyond. Clinics in Plastic Surgery, 2006. 33(1): p. 55-62.
60. Schaffler, A. and C. Buchler, Concise review: Adipose tissue-derived stromal cells - Basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-827.
61. Brey, E.M. and C.W. Patrick, Jr., Tissue engineering applied to reconstructive surgery. IEEE Eng Med Biol Mag, 2000. 19(5): p. 122-5.
62. Stosich, M.S. and J.J. Mao, Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plastic and reconstructive surgery, 2007. 119(1): p. 71-85.
63. Shi, Y.Y., et al., The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plastic and Reconstructive Surgery, 2005. 116(6): p. 1686-1696.
64. Im, G.I., Y.W. Shin, and K.B. Lee, Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 2005. 13(10): p. 845-853.
65. Kim, D.H., et al., Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse. Microsurgery, 2003. 23(5): p. 424-31.
66. Pfeffer, M.A. and E. Braunwald, VENTRICULAR REMODELING AFTER MYOCARDIAL-INFARCTION - EXPERIMENTAL-OBSERVATIONS AND CLINICAL IMPLICATIONS. Circulation, 1990. 81(4): p. 1161-1172.
67. Orlic, D., J.M. Hill, and A.E. Arai, Stem cells for myocardial regeneration. Circulation Research, 2002. 91(12): p. 1092-1102.
68. Huang, G.S., et al., Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 2011. 32(29): p. 6929-6945.
69. Cheng, N.C., et al., Short-Term Spheroid Formation Enhances the Regenerative Capacity of Adipose-Derived Stem Cells by Promoting Sternness, Angiogenesis, and Chemotaxis. Stem Cells Translational Medicine, 2013. 2(8): p. 584-594.
70. Dertinger, H. and C. Lucke Huhle, A comparative study of post-irradiation growth kinetics of spheroids and monolayers. Int J Radiat Biol Relat Stud Phys Chem Med, 1975. 28(3): p. 255-65.
71. Durand, R.E., Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet, 1976. 9(5): p. 403-12.
72. Haji-Karim, M. and J. Carlsson, Proliferation and viability in cellular spheroids of human origin. Cancer Res, 1978. 38(5): p. 1457-64.
73. Yuhas, J.M. and A.P. Li, Growth fraction as the major determinant of multicellular tumor spheroid growth rates. Cancer Res, 1978. 38(6): p. 1528-32.
74. Carlsson, J., et al., The influence of oxygen on viability and proliferation in cellular spheroids. Int J Radiat Oncol Biol Phys, 1979. 5(11-12): p. 2011-20.
75. Cesarz, Z. and K. Tamama, Spheroid Culture of Mesenchymal Stem Cells. Stem Cells International, 2016: p. 11.
76. Grinnell, F. and M.K. Feld, Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res, 1981. 15(3): p. 363-81.
77. Ruoslahti, E. and M.D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science, 1987. 238(4826): p. 491-7.
78. Cheng, N.C., S. Wang, and T.H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on sternness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-1758.
79. Frith, J.E., B. Thomson, and P.G. Genever, Dynamic Three-Dimensional Culture Methods Enhance Mesenchymal Stem Cell Properties and Increase Therapeutic Potential. Tissue Engineering Part C-Methods, 2010. 16(4): p. 735-749.
80. Korff, T. and H.G. Augustin, Integration of Endothelial Cells in Multicellular Spheroids Prevents Apoptosis and Induces Differentiation. The Journal of Cell Biology, 1998. 143(5): p. 1341-1352.
81. Wang, W., et al., 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials, 2009. 30(14): p. 2705-15.
82. Park, I.S., J.W. Rhie, and S.H. Kim, A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy, 2014. 16(4): p. 508-22.
83. Bhang, S.H., et al., Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011. 32(11): p. 2734-2747.
84. Bartosh, T.J., et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(31): p. 13724-13729.
85. Amos, P.J., et al., Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A, 2010. 16(5): p. 1595-606.
86. Rustad, K.C., et al., Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 2012. 33(1): p. 80-90.
87. Lee, W.Y., et al., The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009. 30(29): p. 5505-13.
88. Schmidt, S. and P. Friedl, Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res, 2010. 339(1): p. 83-92.
89. Almond, A., Hyaluronan. Cellular and Molecular Life Sciences, 2007. 64(13): p. 1591-1596.
90. Lin, R.-Z. and H.-Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 2008. 3(9-10): p. 1172-1184.
91. Kunz-Schughart, L.A., M. Kreutz, and R. Knuechel, Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. International Journal of Experimental Pathology, 1998. 79(1): p. 1-23.
92. Kim, J. and T. Ma, Endogenous Extracellular Matrices Enhance Human Mesenchymal Stem Cell Aggregate Formation and Survival. Biotechnology Progress, 2013. 29(2): p. 441-451.
93. Liao, T.Q., et al., N-Isopropylacrylamide-Based Thermoresponsive Polyelectrolyte Multilayer Films for Human Mesenchymal Stem Cell Expansion. Biotechnology Progress, 2010. 26(6): p. 1705-1713.
94. Takezawa, T., Y. Mori, and K. Yoshizato, CELL-CULTURE ON A THERMORESPONSIVE POLYMER SURFACE. Bio-Technology, 1990. 8(9): p. 854-856.
95. Tsai, C.C., et al., Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Molecular Cell, 2012. 47(2): p. 169-182.
96. Bartosh, T.J., et al., 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. Journal of Cellular Biochemistry, 2008. 105(2): p. 612-623.
97. Lin, S.J., et al., Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials, 2006. 27(8): p. 1462-1469.
98. Gonzalez-Cruz, R.D., V.C. Fonseca, and E.M. Darling, Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(24): p. E1523-E1529.
99. Yeh, H.Y., B.H. Liu, and S.H. Hsu, The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials, 2012. 33(35): p. 8943-8954.
100. Cho, H.H., et al., Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells and Development, 2006. 15(6): p. 853-864.
101. Potapova, I.A., et al., Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells, 2007. 25(7): p. 1761-8.
102. Yeh, H.Y., et al., Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics, 2014. 15: p. 10.
103. Park, E. and A.N. Patel, Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biology International, 2010. 34(10): p. 979-984.
104. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7: p. 40069. |