博碩士論文 104324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.140.155
姓名 李政憲(Zheng-Xian Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用於高溫氣體過濾之氧化鋯奈米纖維濾網
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要利用電紡絲技術製備具有可撓性之氧化鋯奈米纖維網並應用於高溫氣體之過濾。我們使用之起始物為表面醋酸改質之氧化鋯奈米粒子(ZA)所形成透明水性溶膠。並藉由醋酸與水之添加調整溶液之導電度與表面張力,透過ZA與聚乙烯吡咯烷酮(PVP)濃度調整溶液黏度,同時將無機物與有機物之體積比控制在30/70以上。在適當之極化電場及溶液流速下可製備出平滑沒有珠狀結構的連續纖維。經過乾燥後只要以500°C鍛燒就可將有機物移除。因為不產生大幅度晶相轉變與燒結,所以氧化鋯纖維膜保有其可撓性並且可承受400次以上180°彎折。但是由於我們未添加氧化釔,所以在800°C高溫鍛燒後會有晶相轉變及體積收縮而變脆弱。經過不同鍛燒溫度下測試,確定可撓性與XRD晶相變化有直接關係。最後我們透過電紡參數的調整製備出不同直徑之奈米纖維且厚度適當之可撓性濾材,進行氯化鈉粉塵之過濾測試,找出過濾效率最高而壓損較低的適當濾材製備方法。
摘要(英) Electrospinning is a scalable process for the preparation of flexible zirconia nanofibrous web useful as a hot gas filter. Composite fibers are formed under polarized electric field from a solution containing zirconium salt and a hydrophilic polymer (PVP) and are later transformed into zirconia via calcination. In this study, the precursor employed was a transparent aqueous sol of zirconia nanocrystals modified with acetate ligand. The surface tension and the conductivity of the precursor were adjusted by the addition of acetic acid and water. The viscosity and the inorganic/organic ratio were adjusted by the concentration of ZA and PVP. Under proper operation conditions, smooth fibrous web without bead structure could be electrospun. The zirconia mat obtained remained flexibility after calcination at 500°C and withstood 400 times of 180° bending. This temperature is lower than that required by literature processes using amorphous precursor. Consequently, the problem of fiber fracture due to crystallization was eliminated. Upon increasing the calcination temperature and duration, the monoclinic phase started to appear which break the fiber and remove its flexibility due to volume expansion. We further prepared flexible mats with nanofibers of different diameters, and study the filtration of NaCl dust. Our mat could achieve more than 99.9% removal with less than 200 Pa pressure drop at 20 LPM flow rate.
關鍵字(中) ★ 氧化鋯
★ 靜電紡絲
★ 奈米纖維
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 1
第二章、文獻回顧 3
2-1 空氣過濾 3
2-1-1 空氣過濾原理 3
2-1-2 高效濾網 4
2-2 靜電紡絲 5
2-2-1 電紡原理 5
2-2-2 溶液參數 5
2-2-3 製程參數 7
2-3 無機奈米纖維 8
2-3-1 可撓性SiO2、TiO2奈米纖維 9
2-3-2 可撓性ZrO2奈米纖維 11
2-4 實驗目的 18
第三章、實驗步驟與方法 19
3-1 實驗架構 19
3-2 實驗藥品 20
3-3 電紡絲溶液配製 21
3-3-1 文獻配方再現一 21
3-3-2 文獻配方再現二 21
3-3-3 奈米粒子溶膠 21
3-3-3-1 氧化鋯奈米粒子合成 21
3-3-3-2醋酸改質奈米粒子 22
3-3-3-3 酒精為主之分散液 23
3-3-3-4 濃醋酸之分散液 23
3-4 靜電紡絲 24
3-5 鍛燒程序 24
3-6 粉塵過濾效率測試 25
3-7 分析儀器 25
3-7-1 動態雷射粒徑儀 (DLS) 25
3-7-2 熱重損失分析儀 (TGA) 25
3-7-3 X-ray繞射儀 (XRD) 25
3-7-4 傅立葉紅外線光譜儀 (FTIR) 26
3-7-5 拉曼光譜儀 (Raman) 26
3-7-6 振動式黏度計 (Vibro Viscometer) 26
3-7-7 場發射掃描式電子顯微鏡 (FE-SEM) 26
第四章、實驗結果與討論 27
4-1 初步嘗試:文獻配方之電紡製程再現 27
4-2 電紡絲設備之電場分布改善 29
4-3電紡絲參數對於纖維形貌之影響 30
4-3-1酒精為主之分散液 30
4-3-1-1酒精/醋酸比率 30
4-3-1-2加入PVP之效果 32
4-3-1-3 製程參數的影響 33
4-3-1-4 溶液參數的影響 34
4-3-2 濃醋酸之分散液 38
4-3-2-1 溶液參數之影響 38
4-3-2-2 製程參數之影響 39
4-4 鍛燒程序 43
4-4-1 鍛燒溫度 43
4-4-2 鍛燒速率 45
4-5 可撓性之奈米結晶纖維膜 49
4-5-1 氧化鋯濃度對於可撓性之影響 49
4-5-2 粉塵過濾效率測試 51
4-5-3 奈米結晶纖維膜之耐溫性 52
第五章、結論與未來展望 55
參考文獻 57
參考文獻
1. T. Grafe, K. Graham, paper presented at the International Nonwovens Technical Conference, Georgia, 2002.
2. T. H. Grafe, K. M. Graham, paper presented at the Nonwovens in Filtration - Fifth International Conference, Germany, 2003.
3. K. Graham, M. Ouyang, T. G. Tom Raether, B. McDonald, P. Knauf, paper presented at the Fifteenth Annual Technical Conference & Expo of the American Filtration & Separations Society, Galveston, Texas, 2002.
4. N. Tucker, J. J. Stanger, M. P. Staiger, H. Razzaq, K. Hofman, The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 63-73 (2012).
5. M. L. F. Nascimento, E. S. Araújo, E. R. Cordeiro, A. H. P. d. Oliveira, H. P. d. Oliveira, A Literature Investigation about Electrospinning and Nanofibers: Historical Trends, Current Status and Future Challenges. Recent Patents on Nanotechnology 9, 76-85 (2015).
6. A. L. Szentivanyi, H. Zernetsch, H. Menzel, B. Glasmacher, A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int J Artif Organs 34, 986-997 (2011).
7. K. Garg, G. L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics 5, 13403 (2011).
8. D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics 87, 4531-4547 (2000).
9. A. K. Haghi, M. Akbari, Trends in electrospinning of natural nanofibers. physica status solidi (a) 204, 1830-1834 (2007).
10. Q. Yang et al., Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics 42, 3721-3726 (2004).
11. J.-Y. Zheng et al., The Effect of Surfactants on the Diameter and Morphology of Electrospun Ultrafine Nanofiber. Journal of Nanomaterials 2014, 1-9 (2014).
12. Z. Li, C. Wang, Effects of Working Parameters on Electrospinning. 15-28 (2013).
13. H. Fong, I. Chun, D. H. Reneker, Beaded nanofibers formed during electrospinning. Polymer 40, 4585-4592 (1999).
14. S. Huan et al., Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 8, 2718-2734 (2015).
15. J. Lyons, C. Li, F. Ko, Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597-7603 (2004).
16. S. A. Theron, E. Zussman, A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017-2030 (2004).
17. K. Arayanarakul, N. Choktaweesap, D. Aht-ong, C. Meechaisue, P. Supaphol, Effects of Poly(ethylene glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly(ethylene oxide). Macromolecular Materials and Engineering 291, 581-591 (2006).
18. C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics 205, 2327-2338 (2004).
19. T. Uyar, F. Besenbacher, Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. polymer 49, 5336-5343 (2008).
20. C. Huang et al., Electrospun polymer nanofibres with small diameters. Nanotechnology 17, 1558-1563 (2006).
21. W. Ding et al., Manipulated Electrospun PVA Nanofibers with Inexpensive Salts. Macromolecular Materials and Engineering 295, 958-965 (2010).
22. J. Y. Park, I. H. Lee, G. N. Bea, Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. Journal of Industrial and Engineering Chemistry 14, 707-713 (2008).
23. T. Mazoochi, M. Hamadanian, M. Ahmadi, V. Jabbari, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. International Journal of Industrial Chemistry 3, 2 (2012).
24. D. H. Reneker, A. L. Yarin, Electrospinning jets and polymer nanofibers. Polymer 49, 2387-2425 (2008).
25. V. Pillay et al., A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials 2013, 1-22 (2013).
26. M. Guo et al., Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties. J. Phys. Chem. 114, 916-921 (2010).
27. X. Mao et al., Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Advances 2, 12216 (2012).
28. S.-J. Park, G. G. Chase, K.-U. Jeong, H. Y. Kim, Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. Journal of Sol-Gel Science and Technology 54, 188-194 (2010).
29. E. T. Bender, P. Katta, G. G. Chase, R. D. Ramsier, Spectroscopic investigation of the composition of electrospun titania nanofibers. Surface and Interface Analysis 38, 1252-1256 (2006).
30. R. Zhang et al., In situ synthesis of flexible hierarchical TiO2nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3, 22136-22144 (2015).
31. A. Biswas, H. Park, W. M. Sigmund, Flexible ceramic nanofibermat electrospun from TiO2–SiO2 aqueous sol. Ceramics International 38, 883-886 (2012).
32. M. Xi et al., Mechanically flexible hybrid mat consisting of TiO2 and SiO2 nanofibers electrospun via dual spinnerets for photo-detector. Materials Letters 120, 219-223 (2014).
33. C. Shao et al., A novel method for making ZrO2 nanofibres via an electrospinning technique. Journal of Crystal Growth 267, 380-384 (2004).
34. H. B. Zhang, M. J. Edirisinghe, Electrospinning Zirconia Fiber From a Suspension. Journal of the American Ceramic Society 89, 1870-1875 (2006).
35. E. Davies, A. Lowe, M. Sterns, K. Fujihara, S. Ramakrishna, Phase Morphology in Electrospun Zirconia Microfibers. Journal of the American Ceramic Society 91, 1115-1120 (2008).
36. L. Li, P. Zhang, J. Liang, S. M. Guo, Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing. Ceramics International 36, 589-594 (2010).
37. Y. Zhao, Y. Tang, Y. Guo, X. Bao, Studies of electrospinning process of zirconia nanofibers. Fibers and Polymers 11, 1119-1122 (2010).
38. L. Yin, J. Niu, Z. Shen, Y. Bao, S. Ding, Preparation and photocatalytic activity of nanoporous zirconia electrospun fiber mats. Materials Letters 65, 3131-3133 (2011).
39. D. Qin, A. Gu, G. Liang, L. Yuan, A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin. RSC Adv. 2, 1364-1372 (2012).
40. R. Ghelich, R. Mehdinavaz Aghdam, F. S. Torknik, M. R. Jahannama, Low Temperature Carbothermal Reduction Synthesis of ZrC Nanofibers via Cyclized Electrospun PVP/Zr(OPr)4Hybrid. International Journal of Applied Ceramic Technology 13, 352-358 (2016).
41. O. Saligheh, R. Khajavi, M. E. Yazdanshenas, A. Rashidi, Production and Characterization of Zirconia (ZrO2) Ceramic Nanofibers by Using Electrospun Poly(Vinyl Alcohol)/Zirconium Acetate Nanofibers as a Precursor. Journal of Macromolecular Science, Part B 55, 605-616 (2016).
42. V. V. Rodaev, A. O. Zhigachev, V. V. Korenkov, Y. I. Golovin, The influence of zirconia precursor/binding polymer mass ratio in the intermediate electrospun composite fibers on the phase transformation of final zirconia nanofibers. physica status solidi (a) 213, 2352-2355 (2016).
43. R. C. Garvie, The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. J. Phys. Chem. 69, 1238–1243 (1965).
44. A.-M. Azad, T. Matthews, J. Swary, Processing and characterization of electrospun Y2O3-stabilized ZrO2 (YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers. Materials Science and Engineering: B 123, 252-258 (2005).
45. J. Y. Li et al., Hollow fibers of yttria-stabilized zirconia (8YSZ) prepared by calcination of electrospun composite fibers. Materials Letters 62, 2396-2399 (2008).
46. Y. Chen et al., Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration. RSC Adv. 4, 2756-2763 (2014).
47. G.-X. Sun, F.-T. Liu, J.-Q. Bi, C.-A. Wang, Electrospun zirconia nanofibers and corresponding formation mechanism study. Journal of Alloys and Compounds 649, 788-792 (2015).
48. X. Mao, Y. Bai, J. Yu, B. Ding, J. Ferreira, Flexible and Highly Temperature Resistant Polynanocrystalline Zirconia Nanofibrous Membranes Designed for Air Filtration. Journal of the American Ceramic Society 99, 2760-2768 (2016).
49. X. Mao et al., Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes. CrystEngComm 18, 1139-1146 (2016).
50. K. Castkova, K. Maca, J. Sekaninova, J. Nemcovsky, J. Cihlar, Electrospinning and thermal treatment of yttria doped zirconia fibres. Ceramics International 43, 7581-7587 (2017).
51. J. Li, X. Jiao, D. Chen, Preparation of Zirconia Fibers via a Simple Aqueous Sol‐Gel Method. Journal of Dispersion Science and Technology 28, 531-535 (2007).
52. 白謹通, 製備具再分散之立方體奈米氧化鋯結晶粒子. 化學工程與材料工程學系, 國立中央大學 (2012).
53. E. M. Kock, M. Kogler, T. Bielz, B. Klotzer, S. Penner, In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2. J Phys Chem C Nanomater Interfaces 117, 17666-17673 (2013).
指導教授 蔣孝澈 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明